GRAPHENE

Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of

  • 1.

    Goodenough, J. B. & Park, Okay. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Towards secure lithium metallic anode in rechargeable batteries: a overview. Chem. Rev. 117, 10403–10473 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon J.-M. Li-O2 and Li-S batteries with excessive power storage. Nat. Mater. 11, 19–29 (2012).

  • 4.

    Ma, L. et al. Dendrite-free lithium metallic and sodium metallic batteries. Vitality Storage Mater. 27, 522–554 (2020).

    Article  Google Scholar 

  • 5.

    Wang, Y. et al. Developments and views on rising high-energy-density sodium-metal batteries. Chem 5, 2547–2570 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Solar, B. et al. Design methods to allow the environment friendly use of sodium metallic anodes in high-energy batteries. Adv. Mater. 32, 1903891 (2020).

    CAS  Article  Google Scholar 

  • 7.

    Lee, B., Paek, E., Mitlin, D. & Lee, S. W. Sodium metallic anodes: rising options to dendrite development. Chem. Rev. 119, 5416–5460 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Fan, L. & Li, X. Current advances in efficient safety of sodium metallic anode. Nano Vitality 53, 630–642 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A price and useful resource evaluation of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    ADS  Article  Google Scholar 

  • 10.

    Wei, S. et al. A secure room-temperature sodium-sulfur battery. Nat. Commun. 7, 11722 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Hartmann, P. et al. A chargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Xu, X. et al. Quasi-solid-state dual-ion sodium metallic batteries for low-cost power storage. Chem 6, 902–918 (2020).

    CAS  Article  Google Scholar 

  • 13.

    Wang, H., Matios, E., Luo, J. & Li, W. Combining theories and experiments to grasp the sodium nucleation habits in the direction of secure sodium metallic batteries. Chem. Soc. Rev. 49, 3783–3805 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Ye, L. et al. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh particular capability for sodium-metal batteries. Angew. Chem. Int. Ed. 58, 17054–17060 (2019).

    CAS  Article  Google Scholar 

  • 15.

    Hu, X. et al. Quasi-solid state rechargeable Na-CO2 batteries with decreased graphene oxide Na anodes. Sci. Adv. 3, e1602396 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Lee, J. et al. Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metallic batteries. ACS Appl. Mater. Interfaces 9, 3723–3732 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Lee, Y. et al. Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide permits high-performance sodium metallic electrodes. ACS Appl. Mater. Interfaces 10, 15270–15280 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Shim, J. et al. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for secure, lengthy cycle life and excessive fee lithium metallic batteries. Vitality Environ. Sci. 10, 1911–1916 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Zhou, W., Li, Y., Xin, S. & Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Luo, W. et al. Ultrathin floor coating permits the secure sodium metallic anode. Adv. Vitality Mater. 7, 1601526 (2017).

    Article  CAS  Google Scholar 

  • 21.

    Zhu, M. et al. Dendrite-free sodium metallic anodes enabled by a sodium benzenedithiolate-rich safety layer. Angew. Chem. Int. Ed. 59, 6596–6600 (2020).

    CAS  Article  Google Scholar 

  • 22.

    Wang, H., Wang, C., Matios, E. & Li, W. Important function of ultrathin graphene movies with tunable thickness in enabling extremely secure sodium metallic anodes. Nano Lett. 17, 6808–6815 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Liu, S. et al. Porous Al present collector for dendrite-free Na metallic anodes. Nano Lett. 17, 5862–5868 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Wang, A. et al. Processable and moldable sodium-metal anodes. Angew. Chem. Int. Ed. 56, 11921–11926 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Foroozan, T. et al. Synergistic impact of graphene oxide for impeding the dendritic plating of Li. Adv. Funct. Mater. 28, 1705917 (2018).

    Article  CAS  Google Scholar 

  • 26.

    Zhang, C. et al. 2D supplies for lithium/sodium metallic anodes. Adv. Vitality Mater. 8, 1802833 (2018).

    Article  CAS  Google Scholar 

  • 27.

    Tu, N. D. Okay. et al. Co-solvent induced piezoelectric γ-phase nylon-11 separator for sodium metallic battery. Nano Vitality 70, 104501 (2020).

    Article  CAS  Google Scholar 

  • 28.

    Li, C. et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators towards ultrastable high-current density lithium metallic anodes. Nat. Commun. 10, 1363 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Li, N. et al. Normalized lithium development from the nucleation stage for dendrite-free lithium metallic anodes. Angew. Chem. Int. Ed. 58, 18246–18251 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Kim, P. J. & Pol, V. G. Excessive efficiency lithium metallic batteries enabled by floor tailoring of polypropylene separator with a polydopamine/graphene layer. Adv. Vitality Mater. 8, 1802665 (2018).

    ADS  Article  CAS  Google Scholar 

  • 31.

    Ryou, M.-H. et al. Glorious cycle lifetime of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Vitality Mater. 2, 645–650 (2012).

    CAS  Article  Google Scholar 

  • 32.

    Ryou, M. H., Lee, Y. M., Park, J. Okay. & Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 23, 3066–3070 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Shi, H. D. et al. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metallic anodes. Angew. Chem. Int. Ed. 59, 12147–12153 (2020).

    CAS  Article  Google Scholar 

  • 34.

    Solar, T. et al. A biodegradable polydopamine-derived electrode materials for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55, 10662–10666 (2016).

    CAS  Article  Google Scholar 

  • 35.

    Yue, X., Liu, H. & Liu, P. Polymer grafted on carbon nanotubes as a versatile cathode for aqueous zinc ion batteries. Chem. Commun. 55, 1647–1650 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Liu, T. et al. Self-polymerized dopamine as an natural cathode for Li- and Na-ion batteries. Vitality Environ. Sci. 10, 205–215 (2017).

    CAS  Article  Google Scholar 

  • 37.

    Liu, T. et al. In situ polymerization of dopamine on graphene framework for cost storage functions. Small 14, 1801236 (2018).

    ADS  Article  CAS  Google Scholar 

  • 38.

    Li, W., Liu, J. & Zhao, D. Mesoporous supplies for power conversion and storage gadgets. Nat. Rev. Mater. 1, 16023 (2016).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Liu, W., Lin, D., Pei, A. & Cui, Y. Stabilizing lithium metallic anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138, 15443–15450 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Bredar, A. R. C., Chown, A. L., Burton, A. R. & Farnum, B. H. Electrochemical impedance spectroscopy of metallic oxide electrodes for power functions. ACS Appl. Vitality Mater. 3, 66–98 (2020).

    CAS  Article  Google Scholar 

  • 41.

    Zhou, Y. et al. A high-temperature Na-ion battery: boosting the speed functionality and cycle life by construction engineering. Small 16, e1906669 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 42.

    Li, S. et al. Growing high-performance lithium metallic anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, e1706375 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 43.

    Liang, J. et al. A nano-shield design for separators to withstand dendrite formation in lithium-metal batteries. Angew. Chem. Int. Ed. 59, 6561–6566 (2020).

    CAS  Article  Google Scholar 

  • 44.

    Chu, C. et al. Uniform nucleation of sodium in 3D carbon nanotube framework by way of oxygen doping for long-life and environment friendly Na metallic anodes. Vitality Storage Mater. 23, 137–143 (2019).

    Article  Google Scholar 

  • 45.

    Wang, S. et al. Steady sodium metallic batteries by way of manipulation of electrolyte solvation construction. Small Strategies 4, 1900856 (2020).

    CAS  Article  Google Scholar 

  • 46.

    Shi, H. et al. 3D versatile, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14, 8678–8688 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Hou, Z. et al. Poly(vinylidene difluoride) coating on Cu present collector for high-performance Na metallic anode. Vitality Storage Mater. 24, 588–593 (2020).

    Article  Google Scholar 

  • 48.

    Bao, C. et al. Sodiophilic ornament of a three-dimensional conductive scaffold towards a secure Na metallic anode. ACS Maintain. Chem. Eng. 8, 5452–5463 (2020).

    CAS  Article  Google Scholar 

  • 49.

    Solar, B. et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 30, 1801334 (2018).

    Article  CAS  Google Scholar 

  • 50.

    Guo, M. et al. Three dimensional frameworks of tremendous ionic conductor for thermodynamically and dynamically favorable sodium metallic anode. Nano Vitality 70, 104479 (2020).

    CAS  Article  Google Scholar 

  • 51.

    Wang, G. et al. Core-shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metallic anodes. Nano Lett. 20, 4464–4471 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    Lu, X. et al. Enabling high-performance sodium metallic anodes by way of a sodiophilic construction constructed by hierarchical Sb2MoO6 microspheres. Nano Vitality 69, 104446 (2020).

    CAS  Article  Google Scholar 

  • 53.

    Luo, J. et al. Pillared MXene with ultralarge interlayer spacing as a secure matrix for prime efficiency sodium metallic anodes. Adv. Funct. Mater. 29, 1805946 (2019).

    Article  CAS  Google Scholar 

  • 54.

    Wang, C., Wang, H., Matios, E., Hu, X. & Li, W. A chemically engineered porous copper matrix with cylindrical core-shell skeleton as a secure host for metallic sodium anodes. Adv. Funct. Mater. 28, 1802282 (2018).

    Article  CAS  Google Scholar 

  • 55.

    Luo, W. et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a extremely secure Na metallic anode. Nano Lett. 17, 3792–3797 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 56.

    Zhang, Q. et al. A thermodynamically secure quasi-liquid interface for dendrite-free sodium metallic anodes. J. Mater. Chem. A 8, 6822–6827 (2020).

    CAS  Article  Google Scholar 

  • 57.

    Wu, F. et al. Diminished graphene oxide aerogel as secure host for dendrite-free sodium metallic anode. Vitality Storage Mater. 22, 376–383 (2019).

    Article  Google Scholar 

  • 58.

    Chi, S.-S., Qi, X.-G., Hu, Y.-S. & Fan, L.-Z. 3D versatile carbon felt host for extremely secure sodium metallic anodes. Adv. Vitality Mater. 8, 1702764 (2018).

    Article  CAS  Google Scholar 

  • 59.

    Zheng, X. et al. Embedding a percolated dual-conductive skeleton with excessive sodiophilicity towards secure sodium metallic anodes. Nano Vitality 69, 104387 (2020).

    CAS  Article  Google Scholar 

  • 60.

    Li, G. et al. Steady metallic battery anodes enabled by polyethylenimine sponge hosts by the use of electrokinetic results. Nat. Vitality 3, 1076–1083 (2018).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Huang, C. J. et al. Decoupling the origins of irreversible coulombic effectivity in anode-free lithium metallic batteries. Nat. Commun. 12, 1452 (2021).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Zhao, Y., Adair, Okay. R. & Solar, X. Current developments and insights into the understanding of Na metallic anodes for Na-metal batteries. Vitality Environ. Sci. 11, 2673–2695 (2018).

    CAS  Article  Google Scholar 

  • 63.

    Zhang, X. et al. Na3V2(PO4)3: A complicated cathode for sodium-ion batteries. Nanoscale 11, 2556–2576 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Guo, D. et al. Reaching excessive mass loading of Na3V2(PO4)3@carbon on carbon material by establishing three-dimensional community between carbon fibers for ultralong cycle-life and ultrahigh fee sodium-ion batteries. Nano Vitality 45, 136–147 (2018).

    CAS  Article  Google Scholar 

  • 65.

    Chen, S. et al. Challenges and views for NASICON-type electrode supplies for superior sodium-ion batteries. Adv. Mater. 29, 1700431 (2017).

    Article  CAS  Google Scholar 

  • 66.

    Jian, Z. et al. Atomic construction and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014).

    CAS  Article  Google Scholar 

  • 67.

    Zhang, W. et al. Full activation of Mn4+/Mn3+ redox in Na4MnCr(PO4)3 as a high-voltage and high-rate cathode materials for sodium-ion batteries. Small 16, e2001524 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 68.

    Rui, X. et al. A low-temperature sodium-ion full battery: very good kinetics and biking stability. Adv. Funct. Mater. 31, 2009458 (2020).

    Article  CAS  Google Scholar 

  • 69.

    Zhang, J. et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the power density report of phosphate cathodes for sodium-ion batteries. Adv. Mater. 32, e1906348 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 70.

    Ponrouch, A. et al. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015).

    CAS  Article  Google Scholar 

  • 71.

    Solar, Y. et al. Improvement and problem of superior nonaqueous sodium ion batteries. EnergyChem 2, 100031 (2020).

    Article  Google Scholar 

  • 72.

    Solar, Y., Shi, P., Xiang, H., Liang, X. & Yu, Y. Excessive-safety nonaqueous electrolytes and interphases for sodium-ion batteries. Small 15, e1805479 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 73.

    Ponrouch, A. et al. In direction of excessive power density sodium ion batteries by means of electrolyte optimization. Vitality Environ. Sci. 6, 2361 (2013).

    CAS  Article  Google Scholar 

  • 74.

    Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M. & Palacín, M. R. Seeking an optimized electrolyte for Na-ion batteries. Vitality Environ. Sci. 5, 8572 (2012).

    CAS  Article  Google Scholar 

  • 75.

    Wu, J. et al. Sodiophilically graded gold coating on carbon skeletons for extremely secure sodium metallic anodes. Small 16, e2003815 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 76.

    Shi, H. et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 13, 14308–14318 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and functions. Adv. Mater. 22, 3906–3924 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Yao, Y., Jiang, Y., Yang, H., Solar, X. & Yu, Y. Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode supplies for prime fee and long-life Na-ion batteries. Nanoscale 9, 10880–10885 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Liu, T. et al. Sustainability-inspired cell design for a totally recyclable sodium ion battery. Nat. Commun. 10, 1965 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 81.

    Yao, Y. et al. Towards excessive power density all solid-state sodium batteries with wonderful flexibility. Adv. Vitality Mater. 10, 1903698 (2020).

    CAS  Article  Google Scholar 

  • 82.

    Pi, Y. et al. Methanol-derived high-performance Na3V2(PO4)3/C: from kilogram-scale synthesis to pouch cell security detection. Nanoscale 12, 21165–21171 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 83.

    Chen, M. et al. Improvement and investigation of a NASICON-type high-voltage cathode materials for high-power sodium-ion batteries. Angew. Chem. Int. Ed. 59, 2449–2456 (2020).

    Article  CAS  Google Scholar 

  • 84.

    Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. A tensorial strategy to computational continuum mechanics utilizing object-oriented strategies. Comput. Phy. 12, 620–631 (1998).

    Article  Google Scholar 

  • 85.

    Zhao, C. Z. et al. An ion redistributor for dendrite-free lithium metallic anodes. Sci. Adv. 4, eaat3446 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Source