GRAPHENE

Fizeau drag in graphene plasmonics


  • 1.

    Fresnel, A., Théorie de la lumière. Cinquième part: questions diverses d’optique [Theory of light. Fifth section: various questions of optics]. Letter to F. Arago, September 1818. In Oeuvers completes d’Augustin Fresnel Vol. 2, 627–636 (Imprimerie Impériale, 1868).

  • 2.

    Fizeau, H. Sur les hypotheses relativesal, áther lumineux, et sur une expérience qui parait démontrer que le mouvement des corps change la vitesse avec laquelle la lumiere se propage dans leur intérieur [On the relative hypotheses, luminous ether, and on an experiment which seems to demonstrate that the movement of bodies changes the speed with which light propagates in their interior.]. CR Hebd. Acad. Sci. 33, 349–355 (1851).


    Google Scholar
     

  • 3.

    Landau, L. & Lifshitz, E. The Classical Principle of Fields Vol. 2 4th edn (Pergamon, 1975).

  • 4.

    Lorentz, H. A. The Principle of Electrons and Its Functions to the Phenomena of Mild and Radiant Warmth (Teubner, 1916).

  • 5.

    Unz, H. Relativistic magneto-ionic principle for drifting plasma in longitudinal course. Phys. Rev. 146, 92–95 (1966).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Moss, T., Burrell, G. & Hetherington, A. Measurement of Fresnel drag produced by electron movement in semiconductors. Proc. Roy. Soc. London Ser. A 308, 125–132 (1968).

    ADS 

    Google Scholar
     

  • 7.

    Almazov, L., Vas’ko, F. & Dykman, I. Affect of service drift on the propagation of electromagnetic wave in a solid-state plasma. JETP Lett. 16, 241–216 (1972).


    Google Scholar
     

  • 8.

    Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).

    PubMed 

    Google Scholar
     

  • 9.

    Low, T. et al. Polaritons in layered two-dimensional supplies. Nat. Mater. 16, 182–194 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Caloz, C. et al. Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Jin, D. et al. Infrared topological plasmons in graphene. Phys. Rev. Lett. 118, 245301 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 12.

    Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum supplies. Nat. Commun. 9, 3740 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Kumar, A. et al. Chiral plasmon in gapped Dirac methods. Phys. Rev. B 93, 041413 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Track, J. C. W. & Rudner, M. S. Chiral plasmons with out magnetic subject. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    ADS 

    Google Scholar
     

  • 16.

    Woessner, A. et al. Extremely confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Ni, G. X. et al. Basic limits to graphene plasmonics. Nature 557, 530–533 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Son, S.-Ok. et al. Graphene hot-electron gentle bulb: incandescence from hBN-encapsulated graphene in air. 2D Mater. 5, 011006 (2017).


    Google Scholar
     

  • 20.

    Borgnia, D. S., Phan, T. V. & Levitov, L. S. Quasi-relativistic Doppler impact and non-reciprocal plasmons in graphene. Preprint at: https://arxiv.org/abs/1512.09044 (2015).

  • 21.

    Sabbaghi, M., Lee, H.-W., Stauber, T. & Kim, Ok. S. Drift-induced modifications to the dynamical polarization of graphene. Phys. Rev. B 92, 195429 (2015).

    ADS 

    Google Scholar
     

  • 22.

    Duppen, B. V., Tomadin, A., Grigorenko, A. N. & Polini, M. Present-induced birefringent absorption and non-reciprocal plasmons in graphene. 2D Mater. 3, 015011 (2016).


    Google Scholar
     

  • 23.

    Bliokh, Ok., Rodríguez-Fortuño, F. J., Bekshaev, A., Kivshar, Y. & Nori, F. Electrical-current-induced unidirectional propagation of floor plasmon-polaritons. Choose. Lett. 43, 963–966 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Sabbaghi, M., Lee, H.-W. & Stauber, T. Electro-optics of current-carrying graphene. Phys. Rev. B 98, 075424 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    W. Zhao et. al, Environment friendly Fizeau drag from Dirac electrons in monolayer graphene. Nature https://www.nature.com/articles/s41586-021-03574-4 (2021).

  • 26.

    Yu, Y.-J. et al. Tuning the graphene work perform by electrical subject impact. Nano Lett. 9, 3430–3434 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Svintsov, D., Vyurkov, V., Ryzhii, V. & Otsuji, T. Hydrodynamic electron transport and nonlinear waves in graphene. Phys. Rev. B 88, 245444 (2013).

    ADS 

    Google Scholar
     

  • 28.

    Lucas, A. & Fong, Ok. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 29.

    Solar, Z., Basov, D. N. & Fogler, M. M. Common linear and nonlinear electrodynamics of a Dirac fluid. Proc. Natl Acad. Sci. USA 115, 3285–3289 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 30.

    Gao, H., Dong, Z. & Levitov, L. Plasmonic drag in a flowing Fermi liquid. Preprint at https://arxiv.org/abs/1912.13409 (2020).

  • 31.

    Brower, D. L. et al. Fizeau interferometer for measurement of plasma electron present. Rev. Sci. Instrum. 75, 3399–3401 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Tyson, R. E. et al. Far-infrared research of the plasmon resonance of a drifting 2DEG. Superlattices Microstruct. 12, 371–374 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Gramila, T. J., Eisenstein, J. P., MacDonald, A. H., Pfeiffer, L. N. & West, Ok. W. Mutual friction between parallel two-dimensional electron methods. Phys. Rev. Lett. 66, 1216–1219 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Gorbachev, R. V. et al. Robust Coulomb drag and damaged symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012).

    CAS 

    Google Scholar
     

  • 35.

    Gurevich, Y. G. & Mashkevich, O. L. The electron–phonon drag and transport phenomena in semiconductors. Phys. Rep. 181, 327–394 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    ADS 

    Google Scholar
     

  • 37.

    Lundeberg, M. B. et al. Tuning quantum nonlocal results in graphene plasmonics. Science 357, 187–191 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Morgado, T. A. & Silveirinha, M. G. Nonlocal results and enhanced nonreciprocity in current-driven graphene methods. Phys. Rev. B 102, 075102 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Papaj, M. & Lewandowski, C. Plasmonic nonreciprocity pushed by band hybridization in moiré supplies. Phys. Rev. Lett. 125, 066801 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic subject impact transistor: new mechanism of plasma wave technology by dc present. Phys. Rev. Lett. 71, 2465–2468 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Gupta, R. & Ridley, B. Two-stream instability in two-dimensional degenerate methods. Phys. Rev. B 39, 6208 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Aizin, G. R., Mikalopas, J. & Shur, M. Present-driven plasmonic increase instability in three-dimensional gated periodic ballistic nanostructures. Phys. Rev. B 93, 195315 (2016).

    ADS 

    Google Scholar
     

  • 45.

    Zolotovskii, I. O. et al. Plasmon-polariton distributed-feedback laser pumped by a quick drift present in graphene. Phys. Rev. A 97, 053828 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Smetanin, I. V., Bouhelier, A. & Uskov, A. V. Coherent floor plasmon amplification via the dissipative instability of 2D direct present. Nanophotonics 8, 135–143 (2018).


    Google Scholar
     

  • 47.

    Zhang, Y., Small, J. P., Pontius, W. V. & Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite gadgets. Appl. Phys. Lett. 86, 073104 (2005).

    ADS 

    Google Scholar
     

  • 48.

    Liu, S. et al. Single crystal development of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    CAS 

    Google Scholar
     

  • 49.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Purdie, D. G. et al. Cleansing interfaces in layered supplies heterostructures. Nat. Commun. 9, 5387 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Ben Shalom, M. et al. Quantum oscillations of the essential present and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).


    Google Scholar
     

  • 53.

    Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS 

    Google Scholar
     

  • 54.

    Krishna Kumar, R. et al. Superballistic move of viscous electron fluid via graphene constrictions. Nat. Phys. 13, 1182 (2017).

    CAS 

    Google Scholar
     

  • 55.

    Meeker, W. Q. & Escobar, L. A. Instructing about approximate confidence areas primarily based on most chance estimation. Am. Stat. 49, 48–53 (1995).


    Google Scholar
     

  • 56.

    Jiang, B.-Y., Zhang, L. M., Castro Neto, A. H., Basov, D. N. & Fogler, M. M. Generalized spectral technique for near-field optical microscopy. J. Appl. Phys. 119, 054305 (2016).

    ADS 

    Google Scholar
     



  • Source link