Uncategorized

Graphene – an overview | ScienceDirect Topics

Electropolished Cu foil 50 mTorr
H2: 2 sccm
1000°C, 30 min CH4: 0.1 sccm, 10 min Polymer help adopted by etching Discount in floor roughness [26] Electropolished Cu foil 0.03 mbar
H2: 30 sccm
1000°C CH4/H2: 88 sccm, 2.3 mbar
950–1050°C, 10–30 min Transferred to SiO2/Si utilizing FeCl3 moist switch methodology Grain measurement of 1.4–3.9 μm [27] Cu foil 40 mTorr
H2: 7 sccm
1000°C, 20 min 200 mTorr
CH4: 2 sccm, 1000°C, 30 min PMMA coating adopted by etching A six-lobe graphene flower [28] Cu foil 17 mTorr
1035°C 50 mTorr
CH4: 1 sccm
1035°C, 90 min hBN/PMMA/PVA switch stamp, 1 min, 125°C Bilayer graphene encapsulated in hexagonal boron nitride [29] Cu foil Ar 10 mL/min,
1050°C, 25 min Ethanol
10.5 cm2 evaporation space, 5 min Cooling with solely Ar movement at 20°C Giant-area graphene with defects [30] Ni on SiO2 Formation of Ni droplets by melting
Ar:H2 300:55 sccm CH4: 5 sccm, 1000°C Switch utilizing PMMA coating adopted by etching Single-layer graphene flakes [31] Ni on SiO2/Si Ar,
1000°C CH4: 550 sccm
1000°C, 7 min Cooled below Ar movement 10°C/s Mono- and bilayer graphene [32] Ni foil disks 5% H2 in Ar, 1000 sccm, 1000°C, 30 min C2H2: 25 sccm, 1000°C, 60 min Ar plasma therapy at 240 W, 15 min, 20 sccm Multilayered graphene with floor defects [33] Porous Ni foam Ar, 500 sccm
1000°C, 5 min Ethanol, 250 sccm
1000°C, 5 min Cooled to room temperature below Ar movement Binder-free 3D graphene [34] Ni on SiO2/Si + C 1100°C, vacuum 4 × 10−3 Pa, 1100°C, as much as 100 min Cooling fee as much as 50°C/min Mono- and bilayer of wafer-sized graphene [35]

Source