GRAPHENE

Large scale self-assembly of plasmonic nanoparticles on deformed graphene templates


  • 1.

    Sensale-Rodriguez, B. Graphene-based optoelectronics. J. Lightwave Technol. 33, 1100–1108 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Sensale-Rodríguez, B., Yan, R., Liu, L., Jena, D. & Xing, H. G. Graphene for reconfigurable terahertz optoelectronics. Proc. IEEE 101, 1705–1716 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 3.

    Nair, R. R. et al. High-quality construction fixed defines visible transparency of graphene. Science 320, 1308–1308 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Schedin, F. et al. Floor-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Lai, H., Xu, F., Zhang, Y. & Wang, L. Current progress on graphene-based substrates for surface-enhanced Raman scattering utility. J. Mater. Chem. B 6, 4008–4028 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Zhang, H., Fan, X., Quan, X., Chen, S. & Yu, H. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic exercise beneath seen mild. Environ. Sci. Technol. 45, 5731–5736 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Koppens, F. H. L. et al. Photodetectors primarily based on graphene, different two-dimensional supplies and hybrid programs. Nat. Nanotechnol. 9, 780–793 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Xia, F. et al. Photocurrent imaging and environment friendly photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized mild. Phys. Rev. Lett. 99, 047601 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Extremely polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Echtermeyer, T. J. et al. Sturdy plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Fang, Z. et al. Plasmon-induced doping of graphene. ACS Nano 6, 10222–10228 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 15.

    Fang, J. et al. Enhanced graphene photodetector with fractal metasurface. Nano Lett. 17, 57–62 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 16.

    Fang, Z. et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 18.

    Leem, J., Wang, M. C., Kang, P. & Nam, S. Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for superior nanoplasmonic sensors. Nano Lett. 15, 7684–7690 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Kunstmann-Olsen, C., Belić, D. & Brust, M. Monitoring sample formation in drying and wetting dispersions of gold nanoparticles by ESEM. Faraday Talk about. 181, 281–298 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 20.

    Liu, Z., Huang, H. & He, T. Massive-area 2D gold nanorod arrays assembled on block copolymer templates. Small 9, 505–510 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Ashkar, R. et al. Fast large-scale meeting and sample switch of one-dimensional gold nanorod superstructures. ACS Appl. Mater. Interfaces 9, 25513–25521 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Hanske, C. et al. Strongly coupled plasmonic modes on macroscopic areas by way of template-assisted colloidal self-assembly. Nano Lett. 14, 6863–6871 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Greybush, N. J. et al. Plasmon resonances in self-assembled two-dimensional au nanocrystal metamolecules. ACS Nano 11, 2917–2927 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Zhang, H. et al. Direct meeting of huge space nanoparticle arrays. ACS Nano 12, 7529–7537 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Zang, J. et al. Multifunctionality and management of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Zang, J., Cao, C., Feng, Y., Liu, J. & Zhao, X. Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci. Rep. 4, 6492 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Kang, P., Wang, M. C., Knapp, P. M. & Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 28, 4639–4645 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Wang, M. C. et al. Heterogeneous, three-dimensional texturing of graphene. Nano Lett. 15, 1829–1835 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Leem, J. A snapshot evaluate on exciton engineering in deformed 2D supplies. MRS Adv. 5, 3491–3506 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Lee, W.-Ok. et al. Multiscale, hierarchical patterning of graphene by conformal wrinkling. Nano Lett. 16, 7121–7127 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Rhee, D. et al. Tender pores and skin layers allow area-specific, multiscale graphene wrinkles with switchable orientations. ACS Nano 14, 166–174 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Yu, Y., Ng, C., König, T. A. F. & Fery, A. Tackling the scalability problem in plasmonics by wrinkle-assisted colloidal self-assembly. Langmuir 35, 8629–8645 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Kimling, J. et al. Turkevich methodology for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 34.

    Vertanessian, A., Allen, A. & Mayo, M. J. Agglomerate formation throughout drying. J. Mater. Res. 18, 495–506 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Guruvenket, S., Rao, G. M., Komath, M. & Raichur, A. M. Plasma floor modification of polystyrene and polyethylene. Appl. Surf. Sci. 236, 278–284 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Béfahy, S. et al. Thickness and elastic modulus of plasma handled PDMS silica-like floor layer. Langmuir 26, 3372–3375 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 37.

    Khang, D.-Y., Rogers, J. A. & Lee, H. H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 19, 1526–1536 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Perrault, S. D. & Chan, W. C. W. Synthesis and floor modification of extremely monodispersed, spherical gold nanoparticles of fifty–200 nm. J. Am. Chem. Soc. 131, 17042–17043 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Kralchevsky, P. A. & Nagayama, Ok. Capillary forces between colloidal particles. Langmuir 10, 23–36 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Denkov, N. et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8, 3183–3190 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Gunnarsson, L. et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of robust interparticle interactions. J. Phys. Chem. B 109, 1079–1087 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Chen, T., Pourmand, M., Feizpour, A., Cushman, B. & Reinhard, B. M. Tailoring plasmon coupling in self-assembled one-dimensional Au nanoparticle chains by means of simultaneous management of dimension and hole separation. J. Phys. Chem. Lett. 4, 2147–2152 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    Fung, Ok. H. & Chan, C. T. A computational research of the optical response of strongly coupled metallic nanoparticle chains. Decide. Commun. 281, 855–864 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Jain, P. Ok., Huang, W. & El-Sayed, M. A. On the common scaling habits of the gap decay of plasmon coupling in metallic nanoparticle pairs: A plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 45.

    Hentschel, M. et al. Transition from remoted to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Dukes, D. et al. Conformational transitions of spherical polymer brushes: Synthesis, characterization, and idea. Macromolecules 43, 1564–1570 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 47.

    Dinkel, R. et al. Function of citrate and NaBr on the floor of colloidal gold nanoparticles throughout functionalization. J. Phys. Chem. C 122, 27383–27391 (2018).

    CAS 
    Article 

    Google Scholar
     



  • Source link