GRAPHENE

Nanophotonic biosensors harnessing van der Waals materials


  • 1.

    Liedberg, B., Nylander, C. & Lundström, I. Biosensing with floor plasmon resonance—how it began. Biosens. Bioelectron. 10, i–ix (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Homola, J. Floor plasmon resonance sensors for detection of chemical and organic species. Chem. Rev. 108, 462–493 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Maynard, J. A. et al. Safety in opposition to anthrax toxin by recombinant antibody fragments correlates with antige affinity. Nat. Biotechnol. 20, 597–601 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Núñez, S., Venhorst, J. & Kruse, C. G. Goal-drug interactions: first ideas and their software to drug discovery. Drug Discov. At this time 17, 10–22 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 5.

    Shang, J. et al. Structural foundation of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Masson, J.-F. Floor plasmon resonance medical biosensors for medical diagnostics. ACS Sens. 2, 16–30 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Brolo, A. G. Plasmonics for future biosensors. Nat. Photon. 6, 709–713 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Špačková, B., Wrobel, P., Bocková, M. & Homola, J. Optical biosensors based mostly on plasmonic nanostructures: a evaluate. Proc. IEEE 104, 2380–2408 (2016).

    Article 

    Google Scholar
     

  • 9.

    Jackman, J. A., Ferhan, A. R. & Cho, N.-J. Nanoplasmonic sensors for biointerfacial science. Chem. Soc. Rev. 46, 3615–3660 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Brolo, A. G., Gordon, R., Leathem, B. & Kavanagh, Ok. L. Floor plasmon sensor based mostly on the improved gentle transmission via arrays of nanoholes in gold movies. Langmuir 20, 4813–4815 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Dahlin, A. et al. Localized floor plasmon resonance sensing of lipid-membrane-mediated biorecognition occasions. J. Am. Chem. Soc. 127, 5043–5048 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Im, H., Lesuffleur, A., Lindquist, N. C. & Oh, S.-H. Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal. Chem. 81, 2854–2859 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549–554 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Lindquist, N. C., Nagpal, P., McPeak, Ok. M., Norris, D. J. & Oh, S.-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 75, 036501 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 15.

    Li, X. et al. Label-free optofluidic nanobiosensor permits real-time evaluation of single-cell cytokine secretion. Small 14, 1870119 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 16.

    Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules utilizing the floor plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379–382 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Beuwer, M. A., Prins, M. W. J. & Zijlstra, P. Stochastic protein interactions monitored by lots of of single-molecule plasmonic biosensors. Nano Lett. 15, 3507–3511 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Kim, E., Baaske, M. D., Schuldes, I., Wilsch, P. S. & Vollmer, F. Label-free optical detection of single enzyme-reactant reactions and related conformational adjustments. Sci. Adv. 3, e1603044 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Jackman, J. A. et al. Plasmonic nanohole sensor for capturing single virus-like particles towards virucidal drug analysis. Small 12, 1159–1166 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Eftekhari, F. et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal. Chem. 81, 4308–4311 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Jonsson, M. P., Dahlin, A. B., Feuz, L., Petronis, S. & Höök, F. Localized functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal. Chem. 82, 2087–2094 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Geim, A. Ok. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Ajayan, P., Kim, P. & Banerjee, Ok. Two-dimensional van der Waals supplies. Phys. At this time 69, 38 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Low, T. et al. Polaritons in layered two-dimensional supplies. Nat. Mater. 16, 182–194 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals supplies. Science 354, aag1992 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 26.

    Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Boghossian, A. A. et al. Close to-infrared fluorescent sensors based mostly on single-walled carbon nanotubes for all times sciences purposes. ChemSusChem 4, 848–863 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Zhang, J. et al. Molecular recognition utilizing corona section complexes manufactured from artificial polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Crick, C. R., Sze, J. Y. Y., Rosillo-Lopez, M., Salzmann, C. G. & Edel, J. B. Selectively sized graphene-based nanopores for in situ single molecule sensing. ACS Appl. Mater. Interfaces 7, 18188–18194 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Koppens, F. H. L. et al. Photodetectors based mostly on graphene, different two-dimensional supplies and hybrid techniques. Nat. Nanotechnol. 9, 780–793 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Xue, T. et al. Ultrasensitive detection of miRNA with an antimonene-based floor plasmon resonance sensor. Nat. Commun. 10, 28 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for robust gentle–matter interactions. Nano Lett. 11, 3370 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Khaliji, Ok. et al. Plasmonic gasoline sensing with graphene nanoribbons. Phys. Rev. Appl. 13, 011002 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Mazzotta, F. et al. Affect of the evanescent discipline decay size on the sensitivity of plasmonic nanodisks and nanoholes. ACS Photon. 2, 256–262 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Li, J. et al. Revisiting the floor sensitivity of nanoplasmonic biosensors. ACS Photon. 2, 425–431 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Zeng, S. et al. Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27, 6163 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Singh, M. et al., Noncovalently functionalized monolayer graphene for sensitivity enhancement of floor plasmon resonance immunosensors, J. Am. Chem. Soc. 137, 2800–2803 (2015).

  • 38.

    Kravets, V. G. et al. Graphene-protected copper and silver plasmonics. Sci. Rep. 4, 5517 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Wu, F. et al. Layered materials platform for floor plasmon resonance biosensing. Sci. Rep. 9, 20286 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Xu, Y. et al. Optical refractive index sensors with plasmonic and photonic constructions: promising and inconvenient fact. Adv. Choose. Mater. 7, 1801433 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 41.

    Neubrech, F. et al. Resonant plasmonic and vibrational coupling in a tailor-made nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 42.

    Adato, R., Aksu, S. & Altug, H. Engineering mid-infrared nanoantennas for floor enhanced infrared absorption. Spectrosc. Mater. At this time 18, 436–446 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Neubrech, F., Huck, C., Weber, Ok., Pucci, A. & Giessen, H. Floor-enhanced infrared spectroscopy utilizing resonant nanoantennas. Chem. Rev. 117, 5110–5145 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Dong, L. et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17, 5768–5774 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Schedin, F. et al. Floor-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Hu, Y., López-Lorente, Á. I. & Mizaikoff, B. Graphene-based floor enhanced vibrational spectroscopy: current developments, challenges, and purposes. ACS Photon. 6, 2182–2197 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Rodrigo, D. et al. Resolving molecule-specific data in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 9, 2160 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 48.

    Limaj, O. et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett. 16, 1502–1508 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 49.

    Neubrech, F. et al. Spatial extent of plasmonic enhancement of vibrational indicators within the infrared. ACS Nano 8, 6250–6258 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 50.

    Khatib, O. et al. Graphene-based platform for infrared near-field nanospectroscopy of water and organic supplies in an aqueous atmosphere. ACS Nano 9, 7968–7975 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Yang, X. et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv. Mater. 30, 1704896 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 52.

    Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • 53.

    Leitis, A. et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 5, eaaw2871 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 54.

    Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Jablan, M., Soljačić, M. & Buljan, H. Plasmons in graphene: elementary properties and potential purposes. Proc. IEEE 101, 1689–1704 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Garcia de Abajo, F. J. Graphene plasmonics: challenges and alternatives. ACS Photon. 1, 135–152 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Guo, Q. et al. Infrared nanophotonics based mostly on graphene plasmonics. ACS Photon. 4, 2989–2999 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Farmer, D. B., Avouris, P., Li, Y., Heinz, T. F. & Han, S.-J. Ultrasensitive plasmonic detection of molecules with graphene. ACS Photon. 3, 553–557 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 60.

    Zhang, Ok. et al. Giant-area graphene nanodot array for plasmon-enhanced infrared spectroscopy. Small 12, 1302–1308 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 61.

    Li, Z. et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein. ACS Photon. 6, 501–509 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Hu, H. et al. Gasoline identification with graphene plasmons. Nat. Commun. 10, 1131 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 63.

    Iranzo, D. A. et al. Probing the last word plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 64.

    Chen, S. et al. Acousitc graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy. ACS Photon. 4, 3089–3097 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 65.

    Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 66.

    Menabde, S. et al. Actual-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat. Commun. 12, 938 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 68.

    Woessner, A. et al. Extremely confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 69.

    De Fazio, D. et al. Excessive-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926–8935 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 70.

    Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared gentle modulation and single-pixel imaging. Gentle.: Sci. Appl. 7, 51 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 71.

    Rodrigo, D., Tittl, A., Limaj, O., Garcia de Abajo, F. J., Pruneri, V. & Altug, H. Double-layer graphene for enhanced tunable infrared plasmonics. Gentle.: Sci. Appl. 6, e16277 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 72.

    Jang, M. S. et al. Tunable giant resonant absorption in a midinfrared graphene Salisbury display. Phys. Rev. B 90, 165409 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 73.

    Luxmoore, I. J., Liu, P. Q., Li, P., Faist, J. & Nash, G. R. Graphene−metamaterial photodetectors for built-in infrared sensing. ACS Photon. 3, 936–941 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 74.

    Adato, R. & Altug, H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in actual time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 75.

    Hu, Y., López-Lorente, Á. I. & Mizaikoff, B. Versatile analytical platform based mostly on graphene-enhanced infrared attenuated complete reflection spectroscopy. ACS Photon. 5, 2160–2167 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 76.

    Zheng, B. et al. Graphene plasmon-enhanced IR biosensing for in situ detection of aqueous-phase molecules with an attenuated complete reflection mode. Anal. Chem. 90, 10786–10794 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 77.

    Radha, B. et al. Molecular transport via capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 78.

    Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons within the pure hyperbolic materials hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 79.

    Xu, X. G. et al. One-dimensional floor phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 80.

    Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy on the robust coupling restrict. Gentle.: Sci. Appl. 7, 17172 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 81.

    Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 82.

    Zheng, Z. et al. Extremely confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metallic oxides. Adv. Mater. 30, 1705318 (2018).

  • 83.

    Eggleton, B. J., Luther-Davies, B. & Richardson, Ok. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 84.

    Schwarz, B. et al. Monolithically built-in mid-infrared lab-on-a-chip utilizing plasmonics and quantum cascade constructions. Nat. Commun. 5, 4085 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 85.

    Chen, C. et al. Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy. Nano Lett. 18, 7601–7608 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 86.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 87.

    Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with excessive responsivity and low darkish present. Nat. Photon 9, 247–252 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 88.

    Kim, J. A. et al. Graphene based mostly fiber optic floor plasmon resonance for bio-chemical sensor purposes. Sens. Actuators 187, 426–433 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 89.

    Yao, B. C. et al. Graphene-based D-shaped polymer FBG for extremely delicate erythrocyte detection. IEEE Phot. Technol. Lett. 27, 2399–2402 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 90.

    Kou, R. et al. Dopamine detection on activated response discipline consisting of graphene-integrated silicon photonic cavity. Choose. Categorical 27, 32058 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 91.

    Cheng, Z. & Goda, Ok. Design of waveguide-integrated graphene gadgets for photonic gasoline sensing. Nanotechnology 27, 505206 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 92.

    Wang, J., Chen, Y., Geng, Y., Hong, X. & Li, X. Theoretical design of mid-infrared graphene optical gasoline sensor based mostly on slot Si core fiber. IEEE Phot. Technol. Lett. 31, 1096–1099 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 93.

    Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared purposes. ACS Nano 13, 913–921 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 94.

    Chen, Y., Lin, H., Hu, J. & Li, M. Heterogeneously built-in silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 8, 6955–6961 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 95.

    Wilder, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Digital construction of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 96.

    Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2, 341–350 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 97.

    Bachilo, S. M. et al. Construction-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 98.

    Weisman, R. B. Chapter 5 optical spectroscopy of single-walled carbon nanotubes. Contemp. Ideas Condens. Matter Sci. 3, 109–133, https://doi.org/10.1016/S1572-0934(08)00005-X (2008).

    CAS 
    Article 

    Google Scholar
     

  • 99.

    Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Jpn. 66, 1066–1073 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 100.

    Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 74, 121401(R) (2006).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 101.

    Lefebvre, J. & Finnie, P. Excited excitonic states in single-walled carbon nanotubes. Nano Lett. 8, 1890–1895 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 102.

    Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion restricted photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 103.

    Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 104.

    Bilalis, P., Katsigiannopoulos, D., Avgeropoulos, A. & Sakellariou, G. Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 4, 2911–2934 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 105.

    Fujigaya, T. & Nakashima, N. Non-covalent polymer wrapping of carbon nanotubes and the position of wrapped polymers as practical dispersants. Sci. Technol. Adv. Mater. 16, 024802 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 106.

    Zhou, Y., Fang, Y. & Ramasamy, R. P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor growth. Sensors 19, 392 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 107.

    Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W. & Mioskowski, C. Supramolecutar self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 108.

    Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T. & Yodh, A. G. Excessive weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 109.

    Paredes, J. I. & Burghard, M. Dispersions of particular person single-walled carbon nanotubes of excessive size. Langmuir 20, 5149–5152 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 110.

    Hough, L. A., Islam, M. F., Hammouda, B., Yodh, A. G. & Heiney, P. A. Construction of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett. 6, 313–317 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 111.

    Ishibashi, A. & Nakashima, N. Particular person dissolution of single-walled carbon nanotubes in aqueous options of steroid or sugar compounds and their Raman and near-IR spectral properties. Chem. Eur. J. 12, 7595–7602 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 112.

    Wenseleers, W. et al. Environment friendly isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14, 1105–1112 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 113.

    Choi, J. H. & Strano, M. S. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett. 90, 223114 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 114.

    Satishkumar, B. C. et al. Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat. Nanotechnol. 2, 560–564 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 115.

    Zhang, J. et al. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to close infrared fluorescent single-walled carbon nanotubes. J. Am. Chem. Soc. 133, 567–581 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 116.

    Iverson, N. M. et al. In vivo biosensing through tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 117.

    Jin, H. et al. Detection of single-molecule H2O2 signalling from epidermal development issue receptor utilizing fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 5, 302–309 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 118.

    Kruss, S. et al. Neurotransmitter detection utilizing corona section molecular recognition on fluorescent single-walled carbon nanotube sensors. J. Am. Chem. Soc. 136, 713–724 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 119.

    Mu, B., Ahn, J., McNicholas, T. P. & Strano, M. S. Producing selective saccharide binding affinity of phenyl boronic acids through the use of single-walled carbon nanotube corona phases. Chem. Eur. J. 21, 4523–4528 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 120.

    Bisker, G. et al. Protein-targeted corona section molecular recognition. Nat. Commun. 7, 10241 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 121.

    Bisker, G. et al. Insulin detection utilizing a corona section molecular recognition website on single-walled carbon nanotubes. ACS Sens. 3, 367–377 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 122.

    Lambert, B., Gillen, A. J., Schuergers, N., Wu, S. J. & Boghossian, A. A. Directed evolution of the optoelectronic properties of artificial nanomaterials. Chem. Commun. 55, 3239–3242 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 123.

    Barone, P. W. & Strano, M. S. Reversible management of carbon nanotube aggregation for a glucose affinity sensor. Angew. Chem. Int. Ed. 45, 8138–8141 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 124.

    Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 125.

    Jin, H., Heller, D. A., Kim, J.-H. & Strano, M. S. Stochastic evaluation of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. Nano Lett. 8, 4299–4304 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 126.

    Landry, M. P. et al. Single-molecule detection of protein efflux from microorganisms utilizing fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 12, 368–377 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 127.

    Kruss, S. et al. Excessive-resolution imaging of mobile dopamine efflux utilizing a fluorescent nanosensor array. Proc. Natl Acad. Sci. USA 114, 1789–1794 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 128.

    Beyene, A. G. et al. Imaging striatal dopamine launch utilizing a nongenetically encoded close to infrared fluorescent catecholamine nanosensor. Sci. Adv. 5, eaaw3108 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 129.

    Lerner, M. B. et al. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate most cancers biomarkers. ACS Nano 6, 5143–5149 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 130.

    Stern, E. et al. Label-free biomarker detection from entire blood. Nat. Nanotechnol. 5, 138–142 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 131.

    Yu, X., Xu, D. & Cheng, Q. Label-free detection strategies for protein microarrays. Proteomics 6, 5493–5503 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 132.

    Ahn, J.-H. et al. Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis. Nano Lett. 11, 2743–2752 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 133.

    Dong, J., Salem, D. P., Solar, J. H. & Strano, M. S. Evaluation of multiplexed nanosensor arrays based mostly on near-infrared fluorescent single-walled carbon nanotubes. ACS Nano 12, 3769–3779 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 134.

    Salem, D. P., Gong, X., Liu, A. T., Akombi, Ok. & Strano, M. S. Immobilization and performance of nIR-fluorescent carbon nanotube sensors on paper substrates for fluidic manipulation. Anal. Chem. 92, 916–923 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 135.

    Welsher, Ok. et al. A path to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 136.

    Luo, S., Zhang, E., Su, Y., Cheng, T. & Shi, C. A evaluate of NIR dyes in most cancers focusing on and imaging. Biomaterials 32, 7127–7138 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 137.

    Kolosnjaj-Tabi, J. et al. In vivo habits of enormous doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 4, 1481–1492 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 138.

    Chowdhury, I., Duch, M. C., Gits, C. C., Hersam, M. C. & Walker, S. L. Influence of synthesis strategies on the transport of single walled carbon nanotubes within the aquatic atmosphere. Environ. Sci. Technol. 46, 11752–11760 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 139.

    Heister, E. et al. Drug loading, dispersion stability, and therapeutic efficacy in focused drug supply with carbon nanotubes. Carbon 50, 622–632 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 140.

    Dong, L., Joseph, Ok. L., Witkowski, C. M. & Craig, M. M. Cytotoxicity of single-walled carbon nanotubes suspended in numerous surfactants. Nanotechnology 19, 255702 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 141.

    Kumar, V., Sharma, N. & Maitra, S. S. In vitro and in vivo toxicity evaluation of nanoparticles. Int. Nano Lett. 7, 243–256 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 142.

    Heller, D. A. et al. Banning carbon nanotubes could be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 143.

    Harvey, J. D. et al. A carbon nanotube reporter of microRNA hybridization occasions in vivo. Nat. Biomed. Eng. 1, 0041 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 144.

    Galassi, T. V. et al. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring results of weight-reduction plan on hepatic macrophages in vivo. Sci. Transl. Med. 10, eaar2680 (2018).

  • 145.

    Williams, R. M. et al. Noninvasive ovarian most cancers biomarker detection through an optical nanosensor implant. Sci. Adv. 4, eaaq1090 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 146.

    Lee, M. A. et al. Implanted Nanosensors In Marine Organisms For Physiological Biologging: Design, Feasibility, And Species Variability. ACS Sens. 4, 32–43 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 147.

    Oh, S.-H. & Altug, H. Efficiency metrics and enabling applied sciences for nanoplasmonic biosensors. Nat. Commun. 9, 5263 (2018).

  • 148.

    Wang, G. et al. Colloquium: Excitons in atomically skinny transition metallic dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 149.

    Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor supplies. npj 2D Mater. Appl. 4, 29 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 150.

    Kim, C. J. et al. Chiral atomically skinny movies. Nat. Nanotechnol. 11, 520–524 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 151.

    Lin, X. et al. Chiral plasmons with twisted atomic bilayers. Phys. Rev. Lett. 125, 077401 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 152.

    Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface via optical spin-orbit coupling. Science 359, 443–447 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 153.

    Solomon, M. L. et al. Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res. 53, 588–598 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 154.

    Yang, W. et al. Carbon nanomaterials in biosensors: must you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 155.

    Wen, W. et al. Latest advances in rising 2D nanomaterials for biosensing and bioimaging purposes. Mater. At this time 21, 164–177 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 156.

    Dahlin, A. B., Wittenberg, N. J., Höök, F. & Oh, S.-H. Guarantees and challenges of nanoplasmonic gadgets for refractometric biosensing. Nanophotonics 2, 83–101 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 157.

    Yanik, A. A. et al. Seeing protein monolayers with bare eye via plasmonic Fano resonances. Proc. Natl Acad. Sci. USA 108, 11784–11789 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 158.

    Vala, M., Etheridge, S., Roach, J. A. & Homola, J. Lengthy-range floor plasmons for delicate detection of bacterial analytes. Sens. Actuators B 139, 59–63 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 159.

    Bosio, N. et al. Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparability. ACS Photon. 6, 1556–1564 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 160.

    Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 161.

    Squires, T. M., Messinger, R. J. & Manalis, S. R. Making it stick: convection, response and diffusion in surface-based biosensors. Nat. Biotechnol. 26, 417–426 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 162.

    Pethig, R. R. Dielectrophoresis: Idea, Methodology and Organic Purposes. John Wiley & Sons (2017).

  • 163.

    Jose, J. et al. Particular person template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis. ACS Photon. 1, 464–470 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 164.

    Freedman, Ok. J. et al. Nanopore sensing at ultra-low concentrations utilizing single-molecule dielectrophoretic trapping. Nat. Commun. 7, 10217 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 165.

    Zheng, L., Li, S., Brody, J. P. & Burke, P. J. Manipulating nanoparticles in resolution with electrically contacted nanotubes utilizing dielectrophoresis. Langmuir 20, 8612–8619 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 166.

    Tuukkanen, S. et al. Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett. 6, 1339–1343 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 167.

    Xie, S., Jiao, N., Tung, S. & Liu, L. Fabrication of SWCNT-graphene field-effect transistors. Micromachines 6, 1317–1330 (2015).

    Article 

    Google Scholar
     

  • 168.

    Barik, A. et al. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nat. Commun. 8, 1867 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 169.

    Engel, M. et al. Graphene-enabled and directed nanomaterial placement from resolution for large-scale gadget integration. Nat. Commun. 9, 4095 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 170.

    Li, X. et al. Plasmonic nanohole array biosensor for label-free and real-time evaluation of dwell cell secretion. Lab Chip 17, 2208–2217 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 171.

    Jonsson, M. P., Jonsson, P., Dahlin, A. B. & Höök, F. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a brand new nanoplasmonic sensor template. Nano Lett. 7, 3462–3468 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 172.

    Vervuurt, R. H. J., Kessels, W. M. M. & Bol, A. A. Atomic layer deposition for graphene gadget integration. Adv. Mater. Interfaces 4, 1700232 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 173.

    Galush, W. J. et al. A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett. 9, 2077–2082 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 174.

    Bruzas, I. et al. Floor-enhanced Raman spectroscopy of fluid-supported lipid bilayers. ACS Appl. Mater. Interfaces 11, 33442–33451 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 175.

    Im, H., Wittenberg, N. J., Lesuffleur, A., Lindquist, N. C. & Oh, S.-H. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci. 1, 688–696 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 176.

    Jackman, J. A. & Cho, N.-J. Supported lipid bilayer formation: past vesicle fusion. Langmuir 36, 1387–1400 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 177.

    Wittenberg, N. J. et al. Facile meeting of micro- and nanoarrays for sensing with pure cell membranes. ACS Nano 5, 7555–7564 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 178.

    Rafiee, J. et al. Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 179.

    Tabaei, S. R., Ng, W. B., Cho, S.-J. & Cho, N.-J. Controlling the formation of phospholipid monolayer, bilayer, and intact vesicle layer on graphene. ACS Appl. Mater. Interfaces 8, 11875–11880 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link