GRAPHENE

On the forbidden graphene’s ZO (out-of-plane optic) phononic band-analog vibrational modes in fullerenes


  • 1.

    Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS 

    Google Scholar
     

  • 2.

    Silva, G. A. Introduction to nanotechnology and its functions to drugs. Surg. Neurol. 61, 216–220 (2004).


    Google Scholar
     

  • 3.

    Hu, Y. & Niemeyer, C. M. From DNA nanotechnology to materials methods engineering. Adv. Mater. 31, 1806294 (2019).


    Google Scholar
     

  • 4.

    Kalantar-Zadeh, Ok. et al. Emergence of liquid metals in nanotechnology. ACS Nano 13, 7388–7395 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Palit, S. 1-recent advances within the utility of nanotechnology in meals business and the huge imaginative and prescient for the long run. In Nanoengineering within the Beverage Trade. (eds. Grumezescu, A. M. & Holban, A. M.) 1–34 (Tutorial Press, 2020).

  • 6.

    Ali, Z. & Ahmad, R. Nanotechnology for Water Therapy. 143–163(Springer Worldwide Publishing, Cham, 2020).


    Google Scholar
     

  • 7.

    Kumar, S. et al. Nanotechnology-based biomaterials for orthopaedic functions: current advances and future prospects. Mater. Sci. Eng. C 106, 110154 (2020).

    CAS 

    Google Scholar
     

  • 8.

    Gobre, V. V. & Tkatchenko, A. Scaling legal guidelines for van der Waals interactions in nanostructured supplies. Nat. Commun. 4, 2341 (2013).

    PubMed 

    Google Scholar
     

  • 9.

    Villagómez, C. J., Garzón, I. L. & Paz-Borbón, L. O. A primary-principles dft dispersion-corrected c60/au(111) raman research. Comput. Mater. Sci. 171, 109208 (2020).


    Google Scholar
     

  • 10.

    Chen, J., Tune, D. D., Ge, Ok., Li, H. & Flavel, B. S. Back and front-junction carbon nanotube-silicon photo voltaic cells with an industrial structure. Adv. Funct. Mater. 30, 2000484 (2020).

    CAS 

    Google Scholar
     

  • 11.

    Raimondo, M. et al. Multifunctionality of structural nanohybrids: the essential function of carbon nanotube covalent and non-covalent functionalization in enabling excessive thermal, mechanical and self-healing efficiency. Nanotechnology 31, 225708 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Lima, J., Gomes, D., Frazão, N., Soares, D. & Sarmento, R. Glyphosate adsorption on c60 fullerene in aqueous medium for water reservoir depollution. J. Mol. Mannequin. 26, 110 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Pochkaeva, E. I. et al. Fullerene derivatives with amino acids, peptides and proteins: from synthesis to biomedical utility. Prog. Stable State Ch. 57, 100255 (2020).

    CAS 

    Google Scholar
     

  • 14.

    Wang, J. et al. Porous n-doped carbon nanoflakes supported hybridized sno2/co3o4 nanocomposites as high-performance anode for lithium-ion batteries. J. Colloid Interface Sci. 560, 546–554 (2020).

    PubMed 

    Google Scholar
     

  • 15.

    Sha, T.-D. et al. Superlubricity between a silicon tip and graphite enabled by the nanolithography-assisted nanoflakes tribo-transfer. Nanotechnology 31, 205703 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Jayabalaji, G., Ramya, L. & Meena Devi, J. Investigation on the structural, thermal and hydration properties of gold-fullerene nanocomposite. J. Chem. Sci. 132, 71 (2020).

    CAS 

    Google Scholar
     

  • 17.

    Carnalla, S., Posada, A. & Garzón, I. L. Vibrational properties of nickel and gold clusters. Nanostructured Mater. 3, 385 (1993).

    CAS 

    Google Scholar
     

  • 18.

    Posada-Amarillas, A. & Garzón, I. L. Vibrational evaluation of nin clusters. Phys. Rev. B 54, 10362–10365 (1996).

    CAS 

    Google Scholar
     

  • 19.

    Maioli, P. et al. Mechanical vibrations of atomically outlined steel clusters: from nano- to molecular-size oscillators. Nano Lett. 18, 6842–6849 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Juvé, V. et al. Probing elasticity on the nanoscale: terahertz acoustic vibration of small steel nanoparticles. Nano Lett. 10, 1853–1858 (2010).

    PubMed 

    Google Scholar
     

  • 21.

    Sauceda, H. E. & Garzón, I. L. Structural willpower of steel nanoparticles from their vibrational (phonon) density of states. J. Phys. Chem. C 119, 10876–10880 (2015).

    CAS 

    Google Scholar
     

  • 22.

    Bayle, M., Combe, N., Sangeetha, N. M., Viau, G. & Carles, R. Vibrational and digital excitations in gold nanocrystals. Nanoscale 6, 9157–9165 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Bayle, M. et al. Experimental investigation of the vibrational density of states and digital excitations in metallic nanocrystals. Phys. Rev. B 89, 195402 (2014).


    Google Scholar
     

  • 24.

    Carles, R., Benzo, P., Pécassou, B. & Bonafos, C. Vibrational density of states and thermodynamics on the nanoscale:the 3d-Second transition in gold nanostructures. Sci. Rep. 6, 39164 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Roldan Cuenya, B. et al. Dimension-dependent evolution of the atomic vibrational density of states and thermodynamic properties of remoted fe nanoparticles. Phys. Rev. B 86, 165406 (2012).


    Google Scholar
     

  • 26.

    Sauceda, H. E. et al. Vibrational properties of steel nanoparticles: atomistic simulation and comparability with time-resolved investigation. J. Phys. Chem. C 116, 25147–25156 (2012).

    CAS 

    Google Scholar
     

  • 27.

    Sauceda, H. E., Pelayo, J. J., Salazar, F., Pérez, L. A. & Garzón, I. L. Vibrational spectrum, caloric curve, low-temperature warmth capability, and debye temperature of sodium clusters: the na139+ case. J. Phys. Chem. C 117, 11393–11398 (2013).

    CAS 

    Google Scholar
     

  • 28.

    Lei, H., Li, J., Liu, Y. & Liu, X. Construction-dependent vibrational properties of metallic nanoclusters. Eur. Phys. Lett. 101, 46001 (2013).


    Google Scholar
     

  • 29.

    Sauceda, H. E. & Garzón, I. L. Vibrational properties and particular warmth of core–shell ag–au icosahedral nanoparticles. Phys. Chem. Chem. Phys. 17, 28054–28059 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Malola, S., Lehtovaara, L., Enkovaara, J. & Häkkinen, H. Start of the localized floor plasmon resonance in monolayer-protected gold nanoclusters. ACS Nano 7, 10263–10270 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Fultz, B., Ahn, C. C., Alp, E. E., Sturhahn, W. & Toellner, T. S. Phonons in nanocrystalline 57fe. Phys. Rev. Lett. 79, 937–940 (1997).

    CAS 

    Google Scholar
     

  • 32.

    Kara, A., Al-Rawi, A. N. & Rahman, T. S. Vibrational dynamics and extra entropy of multi-grain nanoparticles. J. Comput. Theor. Nanos. 1, 216–220 (2004).

    CAS 

    Google Scholar
     

  • 33.

    Kara, A. & Rahman, T. S. Vibrational dynamics and thermodynamics of surfaces and nanostructures. Surf. Sci. Rep. 56, 159–187 (2005).


    Google Scholar
     

  • 34.

    Matsko, N. L. Formation of regular floor plasmon modes in small sodium nanoparticles. Phys. Chem. Chem. Phys. 22, 13285–13291 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Sauceda, H. E., Salazar, F., Pérez, L. A. & Garzón, I. L. Dimension and form dependence of the vibrational spectrum and low-temperature particular warmth of au nanoparticles. J. Phys. Chem. C 117, 25160–25168 (2013).

    CAS 

    Google Scholar
     

  • 36.

    Saito, M. & Miyamoto, Y. Vibration and vibronic coupling of c20 isomers: ring, bowl, and cage clusters. Phys. Rev. B 65, 165434 (2002).


    Google Scholar
     

  • 37.

    Prinzbach, H. et al. C20 carbon clusters: Fullerene-boat-sheet technology, mass choice, photoelectron characterization. Chem. Eur. J. 12, 6268–6280 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Lin, F., Sørensen, E. S., Kallin, C. & Berlinsky, A. J. Robust correlation results within the fullerene c20 studied utilizing a one-band hubbard mannequin. Phys. Rev. B 76, 033414 (2007).


    Google Scholar
     

  • 39.

    Han, M. J., Kim, G., Lee, J. I. & Yu, J. Competitors between structural distortion and magnetic second formation in fullerene c20. J. Chem. Phys. 130, 184107 (2009).

    PubMed 

    Google Scholar
     

  • 40.

    Jin, Y., Perera, A., Lotrich, V. F. & Bartlett, R. J. Coupled cluster geometries and energies of c20 carbon cluster isomers – a brand new benchmark research. Chem. Phys. Lett. 629, 76 – 80 (2015).


    Google Scholar
     

  • 41.

    Schütt, Ok. T. et al. Schnet: a continuous-filter convolutional neural community for modeling quantum interactions. In Advances in Neural Info Processing Methods 30, 991–1001 (Curran Associates, Inc., 2017).

  • 42.

    Schütt, Ok. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, Ok.-R. Schnet– a deep studying structure for molecules and supplies. J. Chem. Phys. 148, 241722 (2018).

    PubMed 

    Google Scholar
     

  • 43.

    Tkatchenko, A. & Scheffler, M. Correct molecular van der Waals interactions from ground-state electron density and free-atom reference knowledge. Phys. Rev. Lett. 102, 073005 (2009).

    PubMed 

    Google Scholar
     

  • 44.

    Chmiela, S. et al. Machine studying of correct energy-conserving molecular pressure fields. Sci. Adv. 3, e1603015 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Chmiela, S., Sauceda, H. E., Müller, Ok.-R. & Tkatchenko, A. In direction of actual molecular dynamics simulations with machine-learned pressure fields. Nat. Commun. 9, 3887 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Chmiela, S., Sauceda, H. E., Poltavsky, I., Müller, Ok.-R. & Tkatchenko, A. sgdml: Establishing correct and knowledge environment friendly molecular pressure fields utilizing machine studying. Comput. Phys. 240, 38 – 45 (2019).


    Google Scholar
     

  • 47.

    Paulatto, L., Mauri, F. & Lazzeri, M. Anharmonic properties from a generalized third-order ab initio method: Idea and functions to graphite and graphene. Phys. Rev. B 87, 214303 (2013).


    Google Scholar
     

  • 48.

    Mei, S., Maurer, L. N., Aksamija, Z. & Knezevic, I. Full-dispersion monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons. J. Appl. Phys. 116, 164307 (2014).


    Google Scholar
     

  • 49.

    Jorio, A., Cançado, L. G. & Malard, L. M. Vibrations in Graphene. 71–89 (Cambridge College Press, 2017).

  • 50.

    da Silva-Araújo, J., Chacham, H. & Nunes, R. W. Hole opening in topological-defect lattices in graphene. Phys. Rev. B 81, 193405 (2010).


    Google Scholar
     

  • 51.

    Diery, W., Moujaes, E. A. & Nunes, R. Nature of localized phonon modes of tilt grain boundaries in graphene. Carbon 140, 250–258 (2018).

    CAS 

    Google Scholar
     

  • 52.

    Pool, A. J., Jain, S. Ok. & Barkema, G. T. Structural characterization of carbon nanotubes by way of the vibrational density of states. Carbon 118, 58 (2017).

    CAS 

    Google Scholar
     

  • 53.

    Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Fuentealba, P., Preuss, H., Stoll, H. & Szentpály, L. V. A correct account of core-polarization with pseudopotentials: single valence-electron alkali compounds. Chem. Phys. Lett. 89, 418–422 (1982).

    CAS 

    Google Scholar
     

  • 55.

    TURBOMOLE V7.0 2015, a growth of College of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 19890–2007, TURBOMOLE GmbH, since 2007; http://www.turbomole.com (2007).

  • 56.

    Haynes, W. CRC Handbook of Chemistry and Physics, 93rd Version. 100 Key Factors (Taylor & Francis, 2012).

  • 57.

    Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of natural molecules. Acc. Chem. Res. 36, 255–263 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Irikura, Ok. Ok. Experimental vibrational zero-point energies: diatomic molecules. J. Phys. Chem. Ref. Knowledge 36, 389–397 (2007).

    CAS 

    Google Scholar
     

  • 59.

    Meilunas, R., Chang, R. P. H., Liu, S., Jensen, M. & Kappes, M. M. Infrared and Raman spectra of c60 and c70 stable movies at room temperature. J. Appl. Phys. 70, 5128–5130 (1991).

    CAS 

    Google Scholar
     

  • 60.

    Vassallo, A. M., Pang, L. S. Ok., Cole-Clarke, P. A. & Wilson, M. A. Emission FTIR research of c60 thermal stability and oxidation. J. Am. Chem. Soc. 113, 7820–7821 (1991).

    CAS 

    Google Scholar
     

  • 61.

    Choi, C. H., Kertesz, M. & Mihaly, L. Vibrational project of all 46 fundamentals of c60 and c606-: Scaled quantum mechanical outcomes carried out in redundant inner coordinates and in comparison with experiments. J. Phys. Chem. A 104, 102–112 (2000).

    CAS 

    Google Scholar
     

  • 62.

    Schettino, V., Pagliai, M., Ciabini, L. & Cardini, G. The vibrational spectrum of fullerene c60. J. Phys. Chem. A 105, 11192–11196 (2001).

    CAS 

    Google Scholar
     

  • 63.

    Beu, T. A. & Onoe, J. First-principles calculations of the vibrational spectra of one-dimensional c60 polymers. Phys. Rev. B 74, 195426 (2006).


    Google Scholar
     

  • 64.

    Pedroza-Montero, J. N., Garzón, I. L. & Sauceda, H. E. Fullerene household vibrational properties (fullervibra) knowledge set. NOMAD (2021).

  • 65.

    Liu, F., Ming, P. & Li, J. Ab initio calculation of best power and phonon instability of graphene underneath stress. Phys. Rev. B 76, 064120 (2007).


    Google Scholar
     



  • Source link