GRAPHENE

Preventing colour fading in artworks with graphene veils


  • 1.

    Dümcke, C. & M. Gnedovsky. The Social and Financial Worth of Cultural Heritage: Literature Evaluation (European Knowledgeable Community on Tradition, 2013).

  • 2.

    Jablonski, E., Learner, T., Hayes, J. & Golden, M. Conservation considerations for acrylic emulsion paints: a literature assessment. Tate Papers 2 https://www.tate.org.uk/research/publications/tate-papers/02/conservation-concerns-for-acrylic-emulsion-paints-literature-review (2004).

  • 3.

    Sterflinger, Okay.& Pinzari, F. The revenge of time: fungal deterioration of cultural heritage with specific reference to books, paper and parchment. Environ. Microbiol. 14, 559–566 (2012).

  • 4.

    Vanmeert, F., Van Der Snickt, G. & Janssens, Okay. Plumbonacrite recognized by X-ray powder diffraction tomography as a lacking hyperlink throughout degradation of pink lead in a Van Gogh portray. Angew. Chem. Int. Ed. Engl. 1889, 3607–3610 (2015).

  • 5.

    Baglioni, P., Carretti, E. & Chelazzi, D. Nanomaterials in artwork conservation. Nat. Nanotechnol. 10, 287–290 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Tsoukleri, G. et al. Subjecting a graphene monolayer to pressure and compression. Small 5, 2397–2402 (2009).

  • 7.

    Androulidakis, C. et al. Graphene flakes underneath managed biaxial deformation. Sci. Rep. 5, 18219 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Berry, V. Impermeability of graphene and its functions. Carbon N.Y. 62, 1–10 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Su, Y. et al. Impermeable barrier movies and protecting coatings primarily based on lowered graphene oxide. Nat. Commun. https://doi.org/10.1038/ncomms5843 (2014).

  • 10.

    Spitz Steinberg, R., Cruz, M., Mahfouz, N. G. A., Qiu, Y. & Damage, R. H. Breathable vapor toxicant boundaries primarily based on multilayer graphene oxide. ACS Nano 11, 5670–5679 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Reina, A. et al. Massive space, few-layer graphene movies on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Cho, D. H. et al. Impact of floor morphology on friction of graphene on varied substrates. Nanoscale 5, 3063–3069 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Taherian, F., Marcon, V., Van Der Vegt, N. F. A. & Leroy, F. What’s the contact angle of water on graphene? Langmuir 29, 1457–1465 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Mak, Okay. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Strong State Commun. 152, 1341–1349 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Zhong, G. et al. Development of steady graphene by open roll-to-roll chemical vapor deposition. Appl. Phys. Lett. 109, 193103 (2016).

  • 16.

    Lee, W. H. et al. Simultaneous switch and doping of CVD-grown graphene by fluoropolymer for clear conductive movies on plastic. ACS Nano 6, 1284–1290 (2012).

  • 17.

    Chandrashekar, B. N. et al. Roll-to-roll inexperienced switch of CVD graphene onto plastic for a clear and versatile triboelectric nanogenerator. Adv. Mater. 27, 5210–5216 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Chen, X. D. et al. Excessive-quality and environment friendly switch of large-area graphene movies onto completely different substrates. Carbon N.Y. 56, 271–278 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Martins, L. G. P. et al. Direct switch of graphene onto versatile substrates. Proc. Natl Acad. Sci. USA 110, 17762–17767 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Kumar, S., Kaushik, S., Pratap, R. & Raghavan, S. Graphene on paper: a easy, low-cost chemical sensing platform. ACS Appl. Mater. Interfaces 7, 2189–2194 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Bae, S. et al. Roll-to-roll manufacturing of 30-inch graphene movies for clear electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Kim, S. J. et al. Ultraclean patterned switch of single-layer graphene by recyclable strain delicate adhesive movies. Nano Lett. 15, 3236–3240 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Schuessler, Z. Delta E. 101. zschuessler.github.io/DeltaE/ (2020).

  • 25.

    Keuch, P. Kinetics: Fading of Triphenylmethanes Dyes—Pseudo First Order Response (Univ. Regensburg, Institute of Natural Chemistry, 2004).

  • 26.

    Dos Santos, T. C. et al. Evaluation of the breakdown merchandise of photo voltaic/UV induced photolytic degradation of meals dye tartrazine. Meals Chem. Toxicol. 68, 307–315 (2014).

    Article 

    Google Scholar
     

  • 27.

    Das, S. R. et al. Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire community. ACS Nano 9, 11121–11133 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Sarno, M., Rossi, G., Cirillo, C. & Incarnato, L. Chilly wall chemical vapor deposition graphene-based conductive tunable movie barrier. Ind. Eng. Chem. Res. 57, 4895–4906 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Wang, M. et al. Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties. J. Am. Chem. Soc. 139, 4144–4151 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Choi, Okay. et al. Lowered water vapor transmission price of graphene gasoline barrier movies for versatile natural field-effect transistors. ACS Nano 9, 5818–5824 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Nam, T. et al. A composite layer of atomic-layer-deposited Al2O3 and graphene for versatile moisture barrier. Carbon N.Y. 116, 553–561 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Nair, R. R. et al. Advantageous construction fixed defines visible transparency of graphene. Science 320, 1308 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kim, D. J. et al. Degradation safety of colour dyes encapsulated by graphene barrier movies. Chem. Mater. 31, 7173–7177 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Seethamraju, S. et al. Million-fold lower in polymer moisture permeability by a graphene monolayer. ACS Nano 10, 6501–6509 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Search engine marketing, H. Okay. et al. Laminated graphene movies for versatile clear skinny movie encapsulation. ACS Appl. Mater. Interfaces 8, 14725–14731 (2016).

    Article 

    Google Scholar
     

  • 36.

    Kim, H. W. et al. Selective gasoline transport via few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Guo, F. et al. Graphene-based environmental boundaries. Environ. Sci. Technol. 46, 7717–7724 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Paraense, M. O., da Cunha, T. H. R., Ferlauto, A. S. & de Souza Figueiredo, A. S. Monolayer and bilayer graphene on polydimethylsiloxane as a composite membrane for gas-barrier functions. J. Appl. Polym. Sci. 134, https://doi.org/10.1002/app.45521 (2017).

  • 39.

    Kidambi, P. R. et al. Evaluation and management of the impermeability of graphene for atomically skinny membranes and boundaries. Nanoscale 9, 8496–8507 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Calculating the Vitality from Daylight over a 12-Hour Interval (NASA, 2012); https://www.grc.nasa.gov/www/k-12/Numbers/Math/Mathematical_Thinking/sun12.htm

  • 41.

    Nationwide Optical Astronomy Observatory (NOAO). Really helpful mild ranges. NOAO. https://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_outdoor+indoor.pdf (2015).

  • 42.

    Singh, S. P. A comparability of various strategies of paper floor smoothness analysis. BioResources 3, 503–516 (2008).


    Google Scholar
     

  • 43.

    Goyal, H. Bodily properties. Properties of Paper https://paperonweb.com/paperpro.htm#PhysicalProperties (2015).

  • 44.

    Han, G. H. et al. Poly(ethylene co-vinyl acetate)-assisted one-step switch of ultra-large graphene. Nano 6, 59–65 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Wyszecki, G. & Stiles, W. S. Coloration Science: Ideas and Strategies, Quantitative Knowledge and Formulae 2nd edn (Wiley Classics Library, 2000).



  • Source link