GRAPHENE

Quanta Magazine


As that tunneling power turned small, the electrons within the sheets would decelerate and turn out to be strongly correlated with each other. MacDonald didn’t know precisely what would occur then. Maybe the extremely conductive graphene sheets would flip into insulators, he speculated, or the twist would evoke magnetic properties. “I frankly didn’t have the instruments to essentially say for certain what would occur on this form of strongly correlated system,” mentioned MacDonald. “Definitely superconducting is the factor you most hope to see, however I didn’t have the nerve to foretell it.”

MacDonald’s concepts largely fell flat. When he submitted his paper for publication, reviewers dinged his simplifying assumptions as implausible, and the paper was rejected by a number of journals earlier than landing in the Proceedings of the National Academy of Sciences. Then after it did come out, few experimentalists went after it. “I wasn’t certain what we’d get from it,” mentioned Dean. “It felt like conjecture, so we put it apart.”

Additionally gradual to pursue the magic angle was Philip Kim, a physicist at Harvard College and a form of dean of the experimental twisted bilayer graphene subject. (Each Dean and Jarillo-Herrero have been postdocs in his lab.) “I believed Allan’s concept was too easy,” he mentioned. “And like most experimenters, I believed it most likely wasn’t potential to regulate the angle effectively sufficient. Folks began to neglect about it.” In reality, mentioned Kim, he and lots of others within the subject have been nearly prepared to maneuver on from twisted bilayer graphene altogether, feeling different novel supplies would possibly current extra thrilling alternatives.

Not Jarillo-Herrero. He had already been engaged on twisted bilayer graphene for a yr when MacDonald’s prediction was revealed in 2011, and he was satisfied there was one thing to it — even after a colleague tried to warn him off it as a possible waste of time. “We attempt to be adventurous on this lab, and we have now a great sense of odor,” mentioned Jarillo-Herrero. “This felt proper.”

The problem, he knew, could be to create an ultraclean, extremely homogeneous pair of graphene sheets that overcome the fabric’s pure opposition to holding a 1.1-degree angle. Graphene sheets present a powerful tendency to drag into alignment with one another. And when pressured into an offset place, the superflexible sheets are inclined to deform.

Jarillo-Herrero’s group went about sprucing each side of the fabrication course of: from creating and cleansing the sheets, to lining them up at simply the suitable angle, to urgent them into place. The measurements needed to be finished in close to vacuum to stop contamination, and the outcomes needed to be cooled to inside a couple of levels of absolute zero to have a great probability of seeing correlated electron conduct — at greater temperatures the electrons transfer too energetically to have an opportunity to strongly work together.

The lab produced dozens of twisted bilayer graphene “gadgets,” as researchers name them, however none of them confirmed vital proof of electron correlation. Then, in 2014, certainly one of his college students introduced him a tool that when uncovered to an electrical subject confirmed indicators of distinctly ungraphene-like insulating properties. Jarillo-Herrero merely put the system apart and continued making new ones. “Our gadgets are difficult. You’ll be able to have flipped edges and different flaws that give bizarre outcomes that don’t have anything to do with new physics,” he explains. “In case you see one thing fascinating as soon as, you don’t take note of it. In case you see it once more, you listen.”

In the summertime of 2017, doctoral scholar Yuan Cao, who on the age of 21 was already in his third yr of graduate college at MIT, introduced Jarillo-Herrero a brand new system that gave him cause to concentrate. As earlier than, an electrical subject switched the system into an insulator. However this time they tried cranking up the sphere greater, and it all of a sudden switched once more — right into a superconductor.

The lab spent the following six months duplicating the outcomes and nailing down measurements. The work was finished in strict secrecy, a break from the sometimes extremely open and collaborative tradition of the twisted bilayer graphene subject. “I had no means of understanding who else may be near superconductivity,” mentioned Jarillo-Herrero. “We share concepts and knowledge on a regular basis on this subject, however we’re additionally very aggressive.”

In January 2018, with a paper ready, he referred to as an editor at Nature, defined what he had, and made his submission contingent on the journal agreeing to a one-week assessment course of — a good friend had instructed him one of many seminal CRISPR papers had obtained that extraordinary therapy. The journal agreed, and the paper flew via the push assessment.

Jarillo-Herrero despatched a prepublication electronic mail heads-up to MacDonald, who hadn’t even recognized that Jarillo-Herrero had been doggedly pursuing the magic angle. “I couldn’t imagine it,” mentioned MacDonald. “I imply I really discovered it past perception.” Dean discovered about it together with the remainder of the physics group at a convention in March 2018, proper across the time that the Nature paper got here out. “The outcomes proved me spectacularly incorrect,” Dean mentioned.

The Excellent Playground

Physicists are enthusiastic about magic-angle twisted bilayer graphene not as a result of it’s more likely to be a sensible superconductor however as a result of they’re satisfied it will possibly illuminate the mysterious properties of superconductivity itself. For one factor, the fabric appears to behave suspiciously like a cuprate, a kind of unique ceramic through which superconductivity can happen at temperatures as much as about 140 kelvin, or midway between absolute zero and room temperature. As well as, the sudden jumps in twisted bilayer graphene — from conducting to insulating to superconducting — with only a tweak of an exterior electrical subject point out that free electrons are slowing to a digital halt, notes physicist Dmitri Efetov of the Institute of Photonic Sciences (ICFO) in Barcelona, Spain. “Once they cease, [the electrons] work together all of the extra strongly,” he mentioned. “Then they will pair up and kind a superfluid.” That fluidlike electron state is taken into account a core function of all superconductors.

The principle cause 30 years of finding out cuprates has shed comparatively little mild on the phenomenon is that cuprates are advanced, multi-element crystals. “They’re poorly understood supplies,” mentioned Efetov, noting that they superconduct solely when exactly doped with impurities throughout their demanding fabrication with the intention to add free electrons. Twisted bilayer graphene, then again, is nothing however carbon, and “doping” it with extra electrons merely requires making use of a readily different electrical subject. “If there’s any system the place we are able to hope to know strongly correlated electrons, it’s this one,” mentioned Jarillo-Herrero. “As a substitute of getting to develop totally different crystals, we simply flip a voltage knob, or apply extra strain with the stamps, or change the rotation angle.” A scholar can attempt to change the doping in an hour at just about no price, he notes, versus the months and tens of 1000’s of {dollars} it’d take to check out a barely totally different doping scheme on a cuprate.

Additionally distinctive, mentioned MacDonald, is the small variety of electrons that appear to be doing the heavy lifting in magic-angle twisted bilayer graphene — about one for each 100,000 carbon atoms. “It’s unprecedented to see superconducting at such a low density of electrons,” he mentioned. “It’s decrease than anything we’ve seen by a minimum of an order of magnitude.” Over 100 papers have popped up on the scientific preprint server arxiv.org that provide theories to clarify what may be happening in magic-angle twisted bilayer graphene. Andrei Bernevig, a theoretical physicist at Princeton College, calls it “an ideal playground” for exploring correlated physics.

Physicists appear desperate to play on it. Apart from with the ability to flip between extremes in conductivity with a literal push of a button, notes Rebeca Ribeiro-Palau, a physicist on the Middle for Nanoscience and Nanotechnology close to Paris, there’s already good proof that twisted bilayer graphene’s magnetic, thermal and optical properties could be nudged into unique behaviors as simply as its digital properties can. “In precept you may change any property of matter on and off,” she mentioned. MacDonald factors out, for instance, that a few of the insulating states in twisted bilayer graphene look like accompanied by magnetism that arises not from the quantum spin states of the electrons, as is often the case, however solely from their orbital angular momentum — a theorized however never-before-observed kind of magnetism.

The Coming Age of Twistronics

Now that Jarillo-Herrero’s group has confirmed that magic angles are a factor, physicists try to use the twistronics strategy to different configurations of graphene. Kim’s group has been experimenting with twisting two double-layers of graphene and has already discovered evidence of superconductivity and correlated physics. Others are stacking up three or extra layers of graphene within the hopes of gaining superconductivity at different magic angles, or even perhaps when they’re aligned. Bernevig posits that because the layers stack up greater and better, physicists might be able to get the superconductivity temperature to climb together with it. Different magic angles might play a task, too. Some teams are squeezing the sheets extra tightly collectively with the intention to improve the magic angle, making it simpler to realize, whereas MacDonald suggests even richer physics might emerge at smaller, if a lot more durable to focus on, magic angles.

In the meantime, different supplies are coming into the twistronics image. Semiconductors and transitional metals could be deposited in twisted layers and are seen pretty much as good candidates for correlated physics — maybe higher than twisted bilayer graphene. “Individuals are pondering of tons of of supplies than could be manipulated this manner,” mentioned Efetov. “Pandora’s field has been opened.”

Dean and Efetov are amongst these sticking with what would possibly already be referred to as traditional twistronics, within the hopes of boosting correlated results in magic-angle twisted bilayer graphene gadgets by actually smoothing out the wrinkles of their fabrication. As a result of there’s no chemical bonding to talk of between the 2 layers, and since the marginally offset layers attempt to settle into alignment, forcing them to carry a magic-angle twist creates stresses that result in submicroscopic hills, valleys and bends. These native distortions imply that some areas of the system may be throughout the magic vary of twist angles, whereas different areas usually are not. “I’ve tried gluing the sides of the layers, however there are nonetheless native variations,” he complained. “Now I’m attempting to determine methods to attenuate the preliminary pressure when the layers are pressed collectively.” Efetov has recently reported progress in doing simply that, and the outcomes have already paid off in new superconducting states at temperatures of about 3 levels kelvin, or twice as excessive as beforehand noticed.

Having burst far out into the lead of the twisted bilayer graphene subject in beautiful style, Jarillo-Herrero isn’t sitting again and ready for others to catch up. His lab’s foremost focus stays attempting to coax ever extra unique conduct out of twisted bilayer graphene, benefiting from the truth that via lengthy trial and error he’s boosted his yield of superconducting samples to almost 50 %. Most different teams are scuffling with yields a tenth of that or much less. Provided that it takes about two weeks to manufacture and take a look at a tool, that’s an infinite productiveness edge. “We expect we’re simply starting to see all of the fascinating states that can come out of those magic-angle graphene methods,” he mentioned. “There’s an enormous section house to discover.” However to cowl his bases, he’s pulled his lab into additionally exploring twistronics in different supplies.

The stakes within the race to give you simpler to make, higher performing, higher-temperature superconductors are enormous. Other than the oft-evoked imaginative and prescient of levitating trains, decreasing the power loss in electrical energy transmission would enhance economies and sharply lower dangerous emissions world wide. Qubit fabrication might all of a sudden turn out to be sensible, maybe ushering within the rise of quantum computer systems. Even with out superconductivity, abnormal computer systems and different electronics might get an enormous enhance in efficiency versus price from twistronics, resulting from the truth that complete advanced digital circuits might in concept be constructed into a couple of sheets of pure carbon, without having a dozen or extra complexly etched layers of difficult supplies frequent to right this moment’s chips. “You might combine wildly totally different properties of matter into these circuits proper subsequent to 1 one other, and differ them with native electrical fields,” mentioned Dean. “I can’t discover phrases to explain how profound that’s. I’d should make one thing up. Possibly dynamic materials engineering?”

Nevertheless such hopes finally pan out, for now the thrill in twisted bilayer graphene appears solely to be constructing. “Some could also be shy to say it, however I’m not,” mentioned Castro Neto. “If the sphere retains going the best way it’s now, anyone goes to get a Nobel Prize out of this.” That form of discuss might be untimely, however even with out it there’s loads of strain on Jarillo-Herrero. “What my lab did creates unrealistic expectations,” he admits. “Everybody appears to suppose we’re going to provide a brand new breakthrough yearly.” He’s actually decided to make additional vital contributions, he mentioned, however he predicts that regardless of the subsequent electrifying discovery is, it’s as probably come out of a unique lab as it’s his. “I’ve already accepted that as a reality, and I’m wonderful with it,” he mentioned. “It could be boring to be in a subject the place you’re the one one advancing it.”

Clarification March 9, 2019: An earlier model of this text referred to the “2004 Nobel Prize–successful discovery” of graphene. The invention was made in 2004, however the Nobel Prize got here later. The sentence has been revised to make this clear.

rnfunction getCookie(identify) {rn let worth = “; ” + doc.cookie;rn var elements = worth.break up(“; ” + identify + “=”);rn if (elements.size === 2) return elements.pop().break up(“;”).shift();rn}rnrnif(getCookie(‘acceptedPolicy’)) {rn// google analyticsrn(operate(i,s,o,g,r,a,m))(window,doc,’script’,’https://www.google-analytics.com/analytics.js’,’ga’);rnga(‘create’, ‘UA-8526335-13’, ‘auto’);rnga(‘set’, ‘forceSSL’, true);rnga(‘require’, ‘displayfeatures’);rnga(‘ship’,’pageview’);rnrn// fb pixelrn!operate(f,b,e,v,n,t,s)rn{if(f.fbq)return;n=f.fbq=operate()rn{n.callMethod? n.callMethod.apply(n,arguments):n.queue.push(arguments)}rn;rnif(!f._fbq)f._fbq=n;n.push=n;n.loaded=!0;n.model=’2.0′;rnn.queue=[];t=b.createElement(e);t.async=!0;rnt.src=v;s=b.getElementsByTagName(e)[0];rns.parentNode.insertBefore(t,s)}(window,doc,’script’,rn’https://join.fb.web/en_US/fbevents.js’);rnfbq(‘init’, ‘190747804793608’); rnfbq(‘monitor’, ‘PageView’);rnrn// chartbeatrnvar _sf_async_config = { uid: 65564, area: ‘quantamagazine.org’, useCanonical: true };(operate() {operate loadChartbeat(){ window._sf_endpt = (new Date()).getTime(); var e = doc.createElement(‘script’); e.setAttribute(‘language’, ‘javascript’); e.setAttribute(‘kind’, ‘textual content/javascript’); e.setAttribute(‘src’,’//static.chartbeat.com/js/chartbeat.js’); doc.physique.appendChild(e); };var oldonload = window.onload;window.onload = (typeof window.onload != ‘operate’) ?loadChartbeat : operate(){ oldonload(); loadChartbeat(); };})();rnrn// parsleyrnconst head = doc.getElementsByTagName(‘head’)[0];rnconst parsleyScript = doc.createElement(“script”);rnparsleyScript.kind = “textual content/javascript”;rnparsleyScript.src = “//cdn.parsely.com/keys/quantamagazine.org/p.js”;rnparsleyScript.id = “parsley-cfg”;rn// finish parsleyrnrn//smartlookrn window.smartlook||(operate(d) {rn var o=smartlook=operate(){ o.api.push(arguments)},h=d.getElementsByTagName(‘head’)[0];rn var c=d.createElement(‘script’);o.api=new Array();c.async=true;c.kind=”textual content/javascript”;rn c.charset=”utf-8″;c.src=”https://rec.smartlook.com/recorder.js”;h.appendChild(c);rn })(doc);rn smartlook(‘init’, ‘3bac9c73fbc7f7f1c527d035a117e2b66f7c3e30′);rnrn} else {rn(operate(i,s,o,g,r,a,m))(window,doc,’script’,’https://www.google-analytics.com/analytics.js’,’ga’);rnga(‘create’, ‘UA-8526335-13’, { storage: ‘none’ });rnga(‘set’, ‘anonymizeIp’, true);rnga(‘set’, ‘forceSSL’, true);rnga(‘require’, ‘displayfeatures’);rnga(‘ship’,’pageview’);rn}rnu003c/script>rn”,”google_analytics”:null,”tracking_scripts_no_cookie”:null,”google_analytics_no_cookie”:null,”popular_searches”:[{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.popular_searches.0″,”typename”:”PopularSearch”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.popular_searches.1″,”typename”:”PopularSearch”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.popular_searches.2″,”typename”:”PopularSearch”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.popular_searches.3″,”typename”:”PopularSearch”}],”search_topics”:[{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.0″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.1″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.2″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.3″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.4″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.5″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.6″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.7″,”typename”:”SearchTopic”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_topics.8″,”typename”:”SearchTopic”}],”search_sections”:[{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_sections.0″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_sections.1″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_sections.2″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.options.acf.search_sections.3″,”typename”:”Term”}],”search_authors”:[{“type”:”id”,”generated”:false,”id”:”AuthorList:28087″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:29794″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:56″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:29458″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:73″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:59″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:8728″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:11648″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:95″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:15493″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:450″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:16315″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:2752″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:15492″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:68″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:62″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:13691″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:50″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:15142″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:8084″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:742″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:11543″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:57″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:7262″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:70″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:19918″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:32676″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:13724″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:26310″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:30207″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:19266″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:13251″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:17000″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:17149″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:5279″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:58″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:32612″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:25173″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:64″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:47″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:14784″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:98″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:5830″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:6793″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:75″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:52″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:69″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:77″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:19092″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:20557″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:66″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:85″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:12170″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:32″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:51″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:72″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:16475″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:91″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:10351″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:31716″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:1241″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:8463″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:49″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:16815″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:67″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:87″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:36139″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:20556″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:90″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:27374″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:40″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:12570″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:23451″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:79″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:60″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:2333″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:3569″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:414″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:17147″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:30953″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:32437″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:7186″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:14093″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:23″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:74″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:19093″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:1472″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:6476″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:35407″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:10″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:19962″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:24″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:1816″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:84″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:55″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:31″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:24011″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:100″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:2784″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:26114″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:9412″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:820″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:1666″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:20950″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:48″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:80″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:15681″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:24577″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:78″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:83″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:35441″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:76″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:15680″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:7239″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:65″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:5944″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:61″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:63″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:26311″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:71″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:17148″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:13356″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:17150″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:2960″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:14785″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:3″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:54″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:88″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:12964″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:53″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:86″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:3244″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:89″,”typename”:”AuthorList”},{“type”:”id”,”generated”:false,”id”:”AuthorList:15913″,”typename”:”AuthorList”}]},”$ROOT_QUERY.choices”:{“acf”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf”,”typename”:”ThemeOptions”},”__typename”:”Choices”},”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″,”kind”:””}).knowledge.0.acf”:{“custom_page_colors”:””,”page_accent_color”:null,”page_text_color”:null,”page_background_color”:null,”header_type”:”default”,”header_gradient_color”:null,”header_gradient_opacity”:null,”header_solid_colors”:””,”header_solid_primary_color”:null,”header_solid_secondary_color”:null,”header_solid_hover_color”:null,”header_transparent_colors”:null,”header_transparent_primary_color”:null,”header_transparent_secondary_color”:null,”header_transparent_hover_color”:null,”__typename”:”ACFFields”},”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″,”kind”:””}).knowledge.0″:{“acf”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″,”kind”:””}).knowledge.0.acf”,”typename”:”ACFFields”},”__typename”:”Submit”},”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″,”kind”:””})”:{“knowledge”:[{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″,”type”:””}).data.0″,”typename”:”Post”}],”__typename”:”PostPageArchive”},”$ROOT_QUERY.getPageMeta({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″,”kind”:””})”:{“redirect_path”:null,”meta”:”nu003c!– Begin The search engine marketing Framework by Sybre Waaijer –>nu003cmeta identify=”description” content material=”The beautiful emergence of a brand new kind of superconductivity with the mere twist of a carbon sheet has left physicists giddy, and its discoverer practically overwhelmed.” />rnu003cmeta property=”og:picture” content material=”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_1200_social.jpg” />rnu003cmeta property=”og:locale” content material=”en_US” />rnu003cmeta property=”og:kind” content material=”article” />rnu003cmeta property=”og:title” content material=”With a Easy Twist, a ‘Magic’ Materials Is Now the Massive Factor in Physics | Quanta Journal” />rnu003cmeta property=”og:description” content material=”The beautiful emergence of a brand new kind of superconductivity with the mere twist of a carbon sheet has left physicists giddy, and its discoverer practically overwhelmed.” />rnu003cmeta property=”og:url” content material=”https://www.quantamagazine.org/how-twisted-graphene-became-the-big-thing-in-physics-20190430/” />rnu003cmeta property=”og:site_name” content material=”Quanta Journal” />rnu003cmeta property=”article:writer” content material=”https://www.fb.com/QuantaNews” />rnu003cmeta property=”fb:app_id” content material=”533309373681765″ />rnu003cmeta property=”article:published_time” content material=”2019-04-30T12:50-04:00″ />rnu003cmeta property=”article:modified_time” content material=”2019-05-09T16:54-04:00″ />rnu003cmeta property=”og:updated_time” content material=”2019-05-09T16:54-04:00″ />rnu003cmeta identify=”twitter:card” content material=”summary_large_image” />rnu003cmeta identify=”twitter:web site” content material=”@QuantaMagazine” />rnu003cmeta identify=”twitter:title” content material=”With a Easy Twist, a ‘Magic’ Materials Is Now the Massive Factor in Physics | Quanta Journal” />rnu003cmeta identify=”twitter:description” content material=”The beautiful emergence of a brand new kind of superconductivity with the mere twist of a carbon sheet has left physicists giddy, and its discoverer practically overwhelmed.” />rnu003cmeta identify=”twitter:picture” content material=”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_1200_social.jpg” />rnu003clink rel=”canonical” href=”https://www.quantamagazine.org/how-twisted-graphene-became-the-big-thing-in-physics-20190430/” />nu003cscript kind=”utility/ld+json”>{“@context”:”https://schema.org”,”@kind”:”BreadcrumbList”,”itemListElement”:[{“@type”:”ListItem”,”position”:1,”item”: Science and Math News”},{“@type”:”ListItem”,”position”:2,”item”:{“@id”:”https://www.quantamagazine.org/physics/”,”name”:”Physics”}},{“@type”:”ListItem”,”position”:3,”item”:{“@id”:”https://www.quantamagazine.org/how-twisted-graphene-became-the-big-thing-in-physics-20190430/”,”name”:”With a Simple Twist, a u2018Magicu2019 Material Is Now the Big Thing in Physics”,”image”:”https://d2r55xnwy6nx47.cloudfront.net/uploads/2019/04/Graphene_Angle_1200_social.jpg”}}]}u003c/script>rnu003c!– Finish The search engine marketing Framework by Sybre Waaijer | 0.00431s –>nn”,”__typename”:”PageMeta”},”$ROOT_QUERY.choices.acf.social_media_links.0″:{“kind”:”fb”,”label”:”Fb”,”url”:”https://www.fb.com/QuantaNews”,”__typename”:”SocialMediaLink”},”$ROOT_QUERY.choices.acf.social_media_links.1″:{“kind”:”twitter”,”label”:”Twitter”,”url”:”https://twitter.com/QuantaMagazine”,”__typename”:”SocialMediaLink”},”$ROOT_QUERY.choices.acf.social_media_links.2″:{“kind”:”youtube”,”label”:”YouTube”,”url”:”http://youtube.com/c/QuantamagazineOrgNews”,”__typename”:”SocialMediaLink”},”$ROOT_QUERY.choices.acf.social_media_links.3″:{“kind”:”instagram”,”label”:”Instagram”,”url”:”https://instagram.com/quantamag”,”__typename”:”SocialMediaLink”},”$ROOT_QUERY.choices.acf.social_media_links.4″:{“kind”:”rss”,”label”:”RSS”,”url”:”https://api.quantamagazine.org/feed/”,”__typename”:”SocialMediaLink”},”$ROOT_QUERY.choices.acf.popular_searches.0″:{“time period”:”math”,”label”:”Arithmetic”,”__typename”:”PopularSearch”},”$ROOT_QUERY.choices.acf.popular_searches.1″:{“time period”:”physics”,”label”:”Physics”,”__typename”:”PopularSearch”},”$ROOT_QUERY.choices.acf.popular_searches.2″:{“time period”:”black holes”,”label”:”Black Holes”,”__typename”:”PopularSearch”},”$ROOT_QUERY.choices.acf.popular_searches.3″:{“time period”:”evolution”,”label”:”Evolution”,”__typename”:”PopularSearch”},”$ROOT_QUERY.choices.acf.search_topics.0″:{“kind”:”Tag”,”label”:”Podcasts”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.0.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.0.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.0.tag”:{“identify”:”podcast”,”slug”:”podcast”,”term_id”:”552″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.0.class”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.1″:{“kind”:”Tag”,”label”:”Columns”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.1.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.1.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.1.tag”:{“identify”:”Quantized Columns”,”slug”:”quantized”,”term_id”:”551″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.1.class”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.2″:{“kind”:”Sequence”,”label”:”Sequence”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.2.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.2.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.2.tag”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.2.class”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.3″:{“kind”:”Class”,”label”:”Interviews”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.3.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.3.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.3.tag”:{“identify”:”Q&A”,”slug”:”qa”,”term_id”:”567″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.3.class”:{“identify”:”Q&A”,”slug”:”qa”,”term_id”:”176″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.4″:{“kind”:”Class”,”label”:”Multimedia”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.4.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.4.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.4.tag”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.4.class”:{“identify”:”Multimedia”,”slug”:”multimedia”,”term_id”:”43″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.5″:{“kind”:”Class”,”label”:”Puzzles”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.5.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.5.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.5.tag”:{“identify”:”puzzles”,”slug”:”puzzles”,”term_id”:”542″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.5.class”:{“identify”:”Puzzles”,”slug”:”puzzles”,”term_id”:”546″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.6″:{“kind”:”Class”,”label”:”Weblog Posts”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.6.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.6.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.6.tag”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.6.class”:{“identify”:”Abstractions weblog”,”slug”:”abstractions”,”term_id”:”619″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.7″:{“kind”:”information”,”label”:”Information Articles”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.7.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.7.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.7.tag”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.7.class”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.8″:{“kind”:”movies”,”label”:”Movies”,”tag”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.8.tag”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.choices.acf.search_topics.8.class”,”typename”:”Time period”},”__typename”:”SearchTopic”},”$ROOT_QUERY.choices.acf.search_topics.8.tag”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_topics.8.class”:{“identify”:null,”slug”:null,”term_id”:null,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_sections.0″:{“identify”:”Arithmetic”,”slug”:”arithmetic”,”term_id”:”188″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_sections.1″:{“identify”:”Physics”,”slug”:”physics”,”term_id”:”189″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_sections.2″:{“identify”:”Biology”,”slug”:”biology”,”term_id”:”191″,”__typename”:”Time period”},”$ROOT_QUERY.choices.acf.search_sections.3″:{“identify”:”Laptop Science”,”slug”:”computer-science”,”term_id”:”190″,”__typename”:”Time period”},”AuthorList:28087″:{“id”:”28087″,”identify”:”Adam Mann”,”__typename”:”AuthorList”},”AuthorList:29794″:{“id”:”29794″,”identify”:”Alex Kontorovich”,”__typename”:”AuthorList”},”AuthorList:56″:{“id”:”56″,”identify”:”Alla Katsnelson”,”__typename”:”AuthorList”},”AuthorList:29458″:{“id”:”29458″,”identify”:”Allison Whitten”,”__typename”:”AuthorList”},”AuthorList:73″:{“id”:”73″,”identify”:”Amanda Gefter”,”__typename”:”AuthorList”},”AuthorList:59″:{“id”:”59″,”identify”:”Andreas von Bubnoff”,”__typename”:”AuthorList”},”AuthorList:8728″:{“id”:”8728″,”identify”:”Anil Ananthaswamy”,”__typename”:”AuthorList”},”AuthorList:11648″:{“id”:”11648″,”identify”:”Ann Finkbeiner”,”__typename”:”AuthorList”},”AuthorList:95″:{“id”:”95″,”identify”:”Ariel Bleicher”,”__typename”:”AuthorList”},”AuthorList:15493″:{“id”:”15493″,”identify”:”Ashley Good”,”__typename”:”AuthorList”},”AuthorList:450″:{“id”:”450″,”identify”:”Ashley Yeager”,”__typename”:”AuthorList”},”AuthorList:16315″:{“id”:”16315″,”identify”:”Invoice Andrews”,”__typename”:”AuthorList”},”AuthorList:2752″:{“id”:”2752″,”identify”:”Bob Henderson”,”__typename”:”AuthorList”},”AuthorList:15492″:{“id”:”15492″,”identify”:”Brendan Z. Foster”,”__typename”:”AuthorList”},”AuthorList:68″:{“id”:”68″,”identify”:”Brooke Borel”,”__typename”:”AuthorList”},”AuthorList:62″:{“id”:”62″,”identify”:”Carl Zimmer”,”__typename”:”AuthorList”},”AuthorList:13691″:{“id”:”13691″,”identify”:”Caroline Lee”,”__typename”:”AuthorList”},”AuthorList:50″:{“id”:”50″,”identify”:”Carrie Arnold”,”__typename”:”AuthorList”},”AuthorList:15142″:{“id”:”15142″,”identify”:”Chanda Prescod-Weinstein”,”__typename”:”AuthorList”},”AuthorList:8084″:{“id”:”8084″,”identify”:”Charlie Wooden”,”__typename”:”AuthorList”},”AuthorList:742″:{“id”:”742″,”identify”:”Christie Wilcox”,”__typename”:”AuthorList”},”AuthorList:11543″:{“id”:”11543″,”identify”:”Claudia Dreifus”,”__typename”:”AuthorList”},”AuthorList:57″:{“id”:”57″,”identify”:”Courtney Humphries”,”__typename”:”AuthorList”},”AuthorList:7262″:{“id”:”7262″,”identify”:”Dalmeet Singh Chawla”,”__typename”:”AuthorList”},”AuthorList:70″:{“id”:”70″,”identify”:”Dan Falk”,”__typename”:”AuthorList”},”AuthorList:19918″:{“id”:”19918″,”identify”:”Dana Najjar”,”__typename”:”AuthorList”},”AuthorList:32676″:{“id”:”32676″,”identify”:”Daniel S. Freed”,”__typename”:”AuthorList”},”AuthorList:13724″:{“id”:”13724″,”identify”:”David H. Freedman”,”__typename”:”AuthorList”},”AuthorList:26310″:{“id”:”26310″,”identify”:”David S. Richeson”,”__typename”:”AuthorList”},”AuthorList:30207″:{“id”:”30207″,”identify”:”David Tse”,”__typename”:”AuthorList”},”AuthorList:19266″:{“id”:”19266″,”identify”:”Devin Powell”,”__typename”:”AuthorList”},”AuthorList:13251″:{“id”:”13251″,”identify”:”Diana Kwon”,”__typename”:”AuthorList”},”AuthorList:17000″:{“id”:”17000″,”identify”:”Elena Renken”,”__typename”:”AuthorList”},”AuthorList:17149″:{“id”:”17149″,”identify”:”Elizabeth Landau”,”__typename”:”AuthorList”},”AuthorList:5279″:{“id”:”5279″,”identify”:”Elizabeth Preston”,”__typename”:”AuthorList”},”AuthorList:58″:{“id”:”58″,”identify”:”Elizabeth Svoboda”,”__typename”:”AuthorList”},”AuthorList:32612″:{“id”:”32612″,”identify”:”Ellen Horne”,”__typename”:”AuthorList”},”AuthorList:25173″:{“id”:”25173″,”identify”:”Emily Levesque”,”__typename”:”AuthorList”},”AuthorList:64″:{“id”:”64″,”identify”:”Emily Singer”,”__typename”:”AuthorList”},”AuthorList:47″:{“id”:”47″,”identify”:”Erica Klarreich”,”__typename”:”AuthorList”},”AuthorList:14784″:{“id”:”14784″,”identify”:”Erika Okay. Carlson”,”__typename”:”AuthorList”},”AuthorList:98″:{“id”:”98″,”identify”:”Esther Landhuis”,”__typename”:”AuthorList”},”AuthorList:5830″:{“id”:”5830″,”identify”:”Eva Silverstein”,”__typename”:”AuthorList”},”AuthorList:6793″:{“id”:”6793″,”identify”:”Evelyn Lamb”,”__typename”:”AuthorList”},”AuthorList:75″:{“id”:”75″,”identify”:”Ferris Jabr”,”__typename”:”AuthorList”},”AuthorList:52″:{“id”:”52″,”identify”:”Frank Wilczek”,”__typename”:”AuthorList”},”AuthorList:69″:{“id”:”69″,”identify”:”Gabriel Popkin”,”__typename”:”AuthorList”},”AuthorList:77″:{“id”:”77″,”identify”:”George Musser”,”__typename”:”AuthorList”},”AuthorList:19092″:{“id”:”19092″,”identify”:”Grant Sanderson”,”__typename”:”AuthorList”},”AuthorList:20557″:{“id”:”20557″,”identify”:”Howard Lee”,”__typename”:”AuthorList”},”AuthorList:66″:{“id”:”66″,”identify”:”Ingrid Daubechies”,”__typename”:”AuthorList”},”AuthorList:85″:{“id”:”85″,”identify”:”Ivan Amato”,”__typename”:”AuthorList”},”AuthorList:12170″:{“id”:”12170″,”identify”:”Janna Levin”,”__typename”:”AuthorList”},”AuthorList:32″:{“id”:”32″,”identify”:”Jeanette Kazmierczak”,”__typename”:”AuthorList”},”AuthorList:51″:{“id”:”51″,”identify”:”Jennifer Ouellette”,”__typename”:”AuthorList”},”AuthorList:72″:{“id”:”72″,”identify”:”John Pavlus”,”__typename”:”AuthorList”},”AuthorList:16475″:{“id”:”16475″,”identify”:”John Preskill”,”__typename”:”AuthorList”},”AuthorList:91″:{“id”:”91″,”identify”:”John Rennie”,”__typename”:”AuthorList”},”AuthorList:10351″:{“id”:”10351″,”identify”:”Jonathan Lambert”,”__typename”:”AuthorList”},”AuthorList:31716″:{“id”:”31716″,”identify”:”Jonathan O’Callaghan”,”__typename”:”AuthorList”},”AuthorList:1241″:{“id”:”1241″,”identify”:”Jordana Cepelewicz”,”__typename”:”AuthorList”},”AuthorList:8463″:{“id”:”8463″,”identify”:”Joshua Roebke”,”__typename”:”AuthorList”},”AuthorList:49″:{“id”:”49″,”identify”:”Joshua Sokol”,”__typename”:”AuthorList”},”AuthorList:16815″:{“id”:”16815″,”identify”:”jye”,”__typename”:”AuthorList”},”AuthorList:67″:{“id”:”67″,”identify”:”Okay.C. Cole”,”__typename”:”AuthorList”},”AuthorList:87″:{“id”:”87″,”identify”:”Kat McGowan”,”__typename”:”AuthorList”},”AuthorList:36139″:{“id”:”36139″,”identify”:”Katarina Zimmer”,”__typename”:”AuthorList”},”AuthorList:20556″:{“id”:”20556″,”identify”:”Katherine Harmon Braveness”,”__typename”:”AuthorList”},”AuthorList:90″:{“id”:”90″,”identify”:”Katia Moskvitch”,”__typename”:”AuthorList”},”AuthorList:27374″:{“id”:”27374″,”identify”:”Kelsey Houston-Edwards”,”__typename”:”AuthorList”},”AuthorList:40″:{“id”:”40″,”identify”:”Kevin Hartnett”,”__typename”:”AuthorList”},”AuthorList:12570″:{“id”:”12570″,”identify”:”Laura Poppick”,”__typename”:”AuthorList”},”AuthorList:23451″:{“id”:”23451″,”identify”:”Liam Drew”,”__typename”:”AuthorList”},”AuthorList:79″:{“id”:”79″,”identify”:”Liz Kruesi”,”__typename”:”AuthorList”},”AuthorList:60″:{“id”:”60″,”identify”:”Maggie McKee”,”__typename”:”AuthorList”},”AuthorList:2333″:{“id”:”2333″,”identify”:”Mallory Locklear”,”__typename”:”AuthorList”},”AuthorList:3569″:{“id”:”3569″,”identify”:”Marcus Woo”,”__typename”:”AuthorList”},”AuthorList:414″:{“id”:”414″,”identify”:”Mark H. Kim”,”__typename”:”AuthorList”},”AuthorList:17147″:{“id”:”17147″,”identify”:”Matthew Hutson”,”__typename”:”AuthorList”},”AuthorList:30953″:{“id”:”30953″,”identify”:”Max G. Levy”,”__typename”:”AuthorList”},”AuthorList:32437″:{“id”:”32437″,”identify”:”Max Kozlov”,”__typename”:”AuthorList”},”AuthorList:7186″:{“id”:”7186″,”identify”:”Melinda Wenner Moyer”,”__typename”:”AuthorList”},”AuthorList:14093″:{“id”:”14093″,”identify”:”Michael Harris”,”__typename”:”AuthorList”},”AuthorList:23″:{“id”:”23″,”identify”:”Michael Moyer”,”__typename”:”AuthorList”},”AuthorList:74″:{“id”:”74″,”identify”:”Michael Nielsen”,”__typename”:”AuthorList”},”AuthorList:19093″:{“id”:”19093″,”identify”:”Michele Bannister”,”__typename”:”AuthorList”},”AuthorList:1472″:{“id”:”1472″,”identify”:”Moira Chas”,”__typename”:”AuthorList”},”AuthorList:6476″:{“id”:”6476″,”identify”:”Monique Brouillette”,”__typename”:”AuthorList”},”AuthorList:35407″:{“id”:”35407″,”identify”:”Mordechai Rorvig”,”__typename”:”AuthorList”},”AuthorList:10″:{“id”:”10″,”identify”:”Natalie Wolchover”,”__typename”:”AuthorList”},”AuthorList:19962″:{“id”:”19962″,”identify”:”Nola Taylor Redd”,”__typename”:”AuthorList”},”AuthorList:24″:{“id”:”24″,”identify”:”Olena Shmahalo”,”__typename”:”AuthorList”},”AuthorList:1816″:{“id”:”1816″,”identify”:”Patrick Honner”,”__typename”:”AuthorList”},”AuthorList:84″:{“id”:”84″,”identify”:”Peter Byrne”,”__typename”:”AuthorList”},”AuthorList:55″:{“id”:”55″,”identify”:”Philip Ball”,”__typename”:”AuthorList”},”AuthorList:31″:{“id”:”31″,”identify”:”Pradeep Mutalik”,”__typename”:”AuthorList”},”AuthorList:24011″:{“id”:”24011″,”identify”:”Puja Changoiwala”,”__typename”:”AuthorList”},”AuthorList:100″:{“id”:”100″,”identify”:”Quanta Journal”,”__typename”:”AuthorList”},”AuthorList:2784″:{“id”:”2784″,”identify”:”R. Douglas Fields”,”__typename”:”AuthorList”},”AuthorList:26114″:{“id”:”26114″,”identify”:”Rachel Crowell”,”__typename”:”AuthorList”},”AuthorList:9412″:{“id”:”9412″,”identify”:”Raleigh McElvery”,”__typename”:”AuthorList”},”AuthorList:820″:{“id”:”820″,”identify”:”Ramin Skibba”,”__typename”:”AuthorList”},”AuthorList:1666″:{“id”:”1666″,”identify”:”Rebecca Boyle”,”__typename”:”AuthorList”},”AuthorList:20950″:{“id”:”20950″,”identify”:”Richard Masland”,”__typename”:”AuthorList”},”AuthorList:48″:{“id”:”48″,”identify”:”Robbert Dijkgraaf”,”__typename”:”AuthorList”},”AuthorList:80″:{“id”:”80″,”identify”:”Roberta Kwok”,”__typename”:”AuthorList”},”AuthorList:15681″:{“id”:”15681″,”identify”:”Robin George Andrews”,”__typename”:”AuthorList”},”AuthorList:24577″:{“id”:”24577″,”identify”:”Rodrigo Pérez Ortega”,”__typename”:”AuthorList”},”AuthorList:78″:{“id”:”78″,”identify”:”Sabine Hossenfelder”,”__typename”:”AuthorList”},”AuthorList:83″:{“id”:”83″,”identify”:”Sarah Lewin”,”__typename”:”AuthorList”},”AuthorList:35441″:{“id”:”35441″,”identify”:”Scott Aaronson”,”__typename”:”AuthorList”},”AuthorList:76″:{“id”:”76″,”identify”:”Sean B. Carroll”,”__typename”:”AuthorList”},”AuthorList:15680″:{“id”:”15680″,”identify”:”Sean Carroll”,”__typename”:”AuthorList”},”AuthorList:7239″:{“id”:”7239″,”identify”:”Shannon Corridor”,”__typename”:”AuthorList”},”AuthorList:65″:{“id”:”65″,”identify”:”Siobhan Roberts”,”__typename”:”AuthorList”},”AuthorList:5944″:{“id”:”5944″,”identify”:”Sophia Chen”,”__typename”:”AuthorList”},”AuthorList:61″:{“id”:”61″,”identify”:”Steph Yin”,”__typename”:”AuthorList”},”AuthorList:63″:{“id”:”63″,”identify”:”Stephanie Bucklin”,”__typename”:”AuthorList”},”AuthorList:26311″:{“id”:”26311″,”identify”:”Stephanie DeMarco”,”__typename”:”AuthorList”},”AuthorList:71″:{“id”:”71″,”identify”:”Stephen Ornes”,”__typename”:”AuthorList”},”AuthorList:17148″:{“id”:”17148″,”identify”:”Steve Nadis”,”__typename”:”AuthorList”},”AuthorList:13356″:{“id”:”13356″,”identify”:”Steven Strogatz”,”__typename”:”AuthorList”},”AuthorList:17150″:{“id”:”17150″,”identify”:”Susan D’Agostino”,”__typename”:”AuthorList”},”AuthorList:2960″:{“id”:”2960″,”identify”:”Tara C. Smith”,”__typename”:”AuthorList”},”AuthorList:14785″:{“id”:”14785″,”identify”:”Thomas Lewton”,”__typename”:”AuthorList”},”AuthorList:3″:{“id”:”3″,”identify”:”Thomas Lin”,”__typename”:”AuthorList”},”AuthorList:54″:{“id”:”54″,”identify”:”Tim Vernimmen”,”__typename”:”AuthorList”},”AuthorList:88″:{“id”:”88″,”identify”:”Tom Siegfried”,”__typename”:”AuthorList”},”AuthorList:12964″:{“id”:”12964″,”identify”:”Vanessa Schipani”,”__typename”:”AuthorList”},”AuthorList:53″:{“id”:”53″,”identify”:”Veronique Greenwood”,”__typename”:”AuthorList”},”AuthorList:86″:{“id”:”86″,”identify”:”Virginia Hughes”,”__typename”:”AuthorList”},”AuthorList:3244″:{“id”:”3244″,”identify”:”Viviane Callier”,”__typename”:”AuthorList”},”AuthorList:89″:{“id”:”89″,”identify”:”Wynne Parry”,”__typename”:”AuthorList”},”AuthorList:15913″:{“id”:”15913″,”identify”:”XiaoZhi Lim”,”__typename”:”AuthorList”},”$ROOT_QUERY.menu({“slug”:”main-menu”}).gadgets.0″:{“title”:”Physics”,”url”:”https://www.quantamagazine.org/physics/”,”order”:1,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”main-menu”}).gadgets.1″:{“title”:”Arithmetic”,”url”:”https://www.quantamagazine.org/arithmetic/”,”order”:2,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”main-menu”}).gadgets.2″:{“title”:”Biology”,”url”:”https://www.quantamagazine.org/biology/”,”order”:3,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”main-menu”}).gadgets.3″:{“title”:”Laptop Science”,”url”:”https://www.quantamagazine.org/computer-science/”,”order”:4,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”main-menu”}).gadgets.4″:{“title”:”Matters”,”url”:”https://www.quantamagazine.org/matters”,”order”:5,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”main-menu”}).gadgets.5″:{“title”:”Archive”,”url”:”https://www.quantamagazine.org/archive/”,”order”:6,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”main-menu”})”:{“gadgets”:[{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”main-menu”}).items.0″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”main-menu”}).items.1″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”main-menu”}).items.2″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”main-menu”}).items.3″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”main-menu”}).items.4″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”main-menu”}).items.5″,”typename”:”MenuItem”}],”__typename”:”Menu”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.0″:{“title”:”Weblog”,”url”:”https://www.quantamagazine.org/abstractions/”,”order”:1,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.1″:{“title”:”Columns”,”url”:”/tag/quantized”,”order”:2,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.2″:{“title”:”Q&A”,”url”:”https://www.quantamagazine.org/qa/”,”order”:3,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.3″:{“title”:”Puzzles”,”url”:”https://www.quantamagazine.org/puzzles/”,”order”:4,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.4″:{“title”:”Movies”,”url”:”/movies”,”order”:5,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.5″:{“title”:”Multimedia”,”url”:”https://www.quantamagazine.org/multimedia/”,”order”:6,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.6″:{“title”:”Podcasts”,”url”:”https://www.quantamagazine.org/tag/podcast”,”order”:7,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).gadgets.7″:{“title”:”About Quanta”,”url”:”https://www.quantamagazine.org/about/”,”order”:8,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”secondary-menu”})”:{“gadgets”:[{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.0″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.1″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.2″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.3″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.4″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.5″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.6″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”secondary-menu”}).items.7″,”typename”:”MenuItem”}],”__typename”:”Menu”},”$ROOT_QUERY.menu({“slug”:”footer”}).gadgets.0″:{“title”:”About Quanta”,”url”:”https://www.quantamagazine.org/about/”,”order”:1,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”footer”}).gadgets.1″:{“title”:”Archive”,”url”:”https://www.quantamagazine.org/archive”,”order”:2,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”footer”}).gadgets.2″:{“title”:”Contact Us”,”url”:”https://www.quantamagazine.org/contact-us/”,”order”:3,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”footer”}).gadgets.3″:{“title”:”Phrases & Circumstances”,”url”:”https://www.quantamagazine.org/terms-conditions/”,”order”:4,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”footer”}).gadgets.4″:{“title”:”Privateness Coverage”,”url”:”https://www.quantamagazine.org/privacy-policy/”,”order”:5,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”footer”}).gadgets.5″:{“title”:”Simons Basis”,”url”:”http://www.simonsfoundation.org”,”order”:6,”__typename”:”MenuItem”},”$ROOT_QUERY.menu({“slug”:”footer”})”:{“gadgets”:[{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”footer”}).items.0″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”footer”}).items.1″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”footer”}).items.2″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”footer”}).items.3″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”footer”}).items.4″,”typename”:”MenuItem”},{“type”:”id”,”generated”:true,”id”:”$ROOT_QUERY.menu({“slug”:”footer”}).items.5″,”typename”:”MenuItem”}],”__typename”:”Menu”},”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″})”:{“kind”:”publish”,”meta”:{“kind”:”id”,”generated”:true,”id”:”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″}).meta”,”typename”:”PageData”},”knowledge”:[{“type”:”id”,”generated”:false,”id”:”Post:71174″,”typename”:”Post”}],”__typename”:”PostPageArchive”},”$ROOT_QUERY.getPostPageArchive({“slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″}).meta”:{“title”:”With a Easy Twist, a ‘Magic’ Materials Is Now the Massive Factor in Physics | Quanta Journal”,”max_num_pages”:0,”creator”:{“kind”:”id”,”generated”:false,”id”:”Creator:null”,”typename”:”Creator”},”tag”:{“kind”:”id”,”generated”:false,”id”:”Time period:null”,”typename”:”Time period”},”class”:{“kind”:”id”,”generated”:false,”id”:”Time period:null”,”typename”:”Time period”},”__typename”:”PageData”},”Creator:null”:{“id”:null,”identify”:null,”hyperlink”:null,”description”:null,”url”:null,”public_email”:null,”fb”:null,”twitter”:null,”instagram”:null,”acf”:null,”__typename”:”Creator”},”Time period:null”:{“id”:null,”slug”:null,”identify”:null,”hyperlink”:null,”description”:null,”picture”:””,”__typename”:”Time period”},”Submit:71174″:{“id”:”71174″,”title”:”With a Easy Twist, a ‘Magic’ Materials Is Now the Massive Factor in Physics”,”excerpt”:”u003cp>The beautiful emergence of a brand new kind of superconductivity with the mere twist of a carbon sheet has left physicists giddy, and its discoverer practically overwhelmed.u003c/p>n”,”hyperlink”:”https://www.quantamagazine.org/how-twisted-graphene-became-the-big-thing-in-physics-20190430/”,”slug”:”how-twisted-graphene-became-the-big-thing-in-physics-20190430″,”disqus”:”71174 https://www.quantamagazine.org/?p=71174″,”date”:”2019-04-30T12:50:31″,”featured_media_image”:null,”authors”:[{“type”:”id”,”generated”:true,”id”:”Post:71174.authors.0″,”typename”:”Author”}],”tags”:[{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.0″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.1″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.2″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.3″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.4″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.5″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.6″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”Post:71174.tags.7″,”typename”:”Term”}],”podcast”:null,”acf”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf”,”typename”:”ACFFields”},”__typename”:”Submit”,”standing”:”publish”,”content material”:””,”classes”:[{“type”:”id”,”generated”:false,”id”:”Term:189″,”typename”:”Term”}],”attachments”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.attachments”,”typename”:”Attachments”},”series_prev”:null,”series_next”:null,”subsequent”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.subsequent”,”typename”:”PostPageArchive”}},”Submit:71174.authors.0″:{“identify”:”David H. Freedman”,”hyperlink”:”https://www.quantamagazine.org/authors/davidhfreedman/”,”__typename”:”Creator”,”acf”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.authors.0.acf”,”typename”:”AuthorACF”}},”Submit:71174.tags.0″:{“slug”:”condensed-matter-physics”,”__typename”:”Time period”,”identify”:”condensed matter physics”,”hyperlink”:”https://www.quantamagazine.org/tag/condensed-matter-physics/”},”Submit:71174.tags.1″:{“slug”:”experimental-physics”,”__typename”:”Time period”,”identify”:”experimental physics”,”hyperlink”:”https://www.quantamagazine.org/tag/experimental-physics/”},”Submit:71174.tags.2″:{“slug”:”materials-science”,”__typename”:”Time period”,”identify”:”supplies science”,”hyperlink”:”https://www.quantamagazine.org/tag/materials-science/”},”Submit:71174.tags.3″:{“slug”:”physics”,”__typename”:”Time period”,”identify”:”physics”,”hyperlink”:”https://www.quantamagazine.org/tag/physics/”},”Submit:71174.tags.4″:{“slug”:”quantum-physics”,”__typename”:”Time period”,”identify”:”quantum physics”,”hyperlink”:”https://www.quantamagazine.org/tag/quantum-physics/”},”Submit:71174.tags.5″:{“slug”:”solid-state-physics”,”__typename”:”Time period”,”identify”:”stable state physics”,”hyperlink”:”https://www.quantamagazine.org/tag/solid-state-physics/”},”Submit:71174.tags.6″:{“slug”:”superconductivity”,”__typename”:”Time period”,”identify”:”superconductivity”,”hyperlink”:”https://www.quantamagazine.org/tag/superconductivity/”},”Submit:71174.tags.7″:{“slug”:”theoretical-physics”,”__typename”:”Time period”,”identify”:”theoretical physics”,”hyperlink”:”https://www.quantamagazine.org/tag/theoretical-physics/”},”$Submit:71174.acf”:{“featured_block_title”:””,”kicker”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.kicker”,”typename”:”Time period”},”featured_image_default”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.featured_image_default”,”typename”:”Picture”},”featured_image_full_width”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.featured_image_full_width”,”typename”:”Picture”},”featured_image_gif”:true,”featured_video”:”false”,”full_page_interactive”:null,”podcast_publish_date”:null,”__typename”:”ACFFields”,”interactive_type”:null,”iframe_url”:null,”return_cursor”:null,”exclude_blurb”:null,”interactive_html”:null,”interactive_css”:null,”interactive_js”:null,”interactive_blurb”:null,”related_article”:null,”modules”:[{“type”:”id”,”generated”:true,”id”:”$Post:71174.acf.modules.0″,”typename”:”ACFImageComponent”},{“type”:”id”,”generated”:true,”id”:”$Post:71174.acf.modules.1″,”typename”:”ACFContent”},{“type”:”id”,”generated”:true,”id”:”$Post:71174.acf.modules.2″,”typename”:”ACFImageComponent”},{“type”:”id”,”generated”:true,”id”:”$Post:71174.acf.modules.3″,”typename”:”ACFContent”}],”template”:”article”,”subtitle”:”The beautiful emergence of a brand new kind of superconductivity with the mere twist of a carbon sheet has left physicists giddy, and its discoverer practically overwhelmed.”,”title_layout”:”default”,”title_background_type”:null,”title_background_image”:null,”title_background_video”:null,”title_background_attribution”:null,”title_background_image_gif”:null,”title_overlay_enable”:null,”title_overlay_color”:null,”title_overlay_opacity”:null,”title_text_color”:null,”featured_image_attribution”:”u003cp>Olena Shmahalo/Quanta Magazineu003c/p>n”,”featured_overlay_enable”:”false”,”featured_overlay_color”:null,”featured_overlay_opacity”:null,”sequence”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.sequence”,”typename”:”Time period”},”intro_content”:null,”make_image_full_width”:null,”hide_ad_on_post”:null},”$Submit:71174.acf.kicker”:{“identify”:”quantum physics”,”hyperlink”:”https://www.quantamagazine.org/tag/quantum-physics/”,”__typename”:”Time period”},”$Submit:71174.acf.featured_image_default”:{“alt”:”Artwork for “With a Easy Twist, a ‘Magic’ Materials Has Quietly Grow to be the Largest Factor in Physics””,”caption”:”It’s exceptionally troublesome to twist two sheets of graphene precisely 1.1 levels out of alignment. However this “magic angle” results in extraordinary results. “I couldn’t imagine it,” mentioned one scientist. “I imply I really discovered it past perception.””,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_520x292.jpg”,”width”:520,”top”:292,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.featured_image_default.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.featured_image_default.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_520x292-520×292.jpg”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_520x292-160×160.jpg”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_520x292-520×292.jpg”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_520x292.jpg”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_520x292.jpg”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_520x292.jpg”,”__typename”:”ImageSizes”},”$Submit:71174.acf.featured_image_full_width”:{“alt”:”Artwork for “With a Easy Twist, a ‘Magic’ Materials Has Quietly Grow to be the Largest Factor in Physics””,”caption”:”It’s exceptionally troublesome to twist two sheets of graphene precisely 1.1 levels out of alignment. However this “magic angle” results in extraordinary results. “I couldn’t imagine it,” mentioned one scientist. “I imply I really discovered it past perception.””,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1220_HPA.gif”,”width”:2880,”top”:1220,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.featured_image_full_width.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.featured_image_full_width.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1220_HPA-520×220.gif”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1220_HPA-160×160.gif”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1220_HPA-520×520.gif”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1220_HPA-1720×729.gif”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1220_HPA-768×325.gif”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1220_HPA-2880×1220.gif”,”__typename”:”ImageSizes”},”Time period:189″:{“id”:”189″,”identify”:”Physics”,”slug”:”physics”,”hyperlink”:”https://www.quantamagazine.org/physics/”,”__typename”:”Time period”},”$Submit:71174.authors.0.acf”:{“tagline”:”Contributing Author”,”avatar”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.authors.0.acf.avatar”,”typename”:”Picture”},”__typename”:”AuthorACF”},”$Submit:71174.authors.0.acf.avatar”:{“alt”:””,”caption”:””,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DavidHFreedman.jpg”,”width”:986,”top”:986,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.authors.0.acf.avatar.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.authors.0.acf.avatar.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DavidHFreedman-520×520.jpg”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DavidHFreedman-160×160.jpg”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DavidHFreedman-520×520.jpg”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DavidHFreedman.jpg”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DavidHFreedman-768×768.jpg”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DavidHFreedman.jpg”,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.0″:{“hide_this_component”:null,”acf_fc_layout”:”image_component”,”structure”:”full”,”settings”:”large_margin”,”attribution”:”u003cp>Olena Shmahalo/Quanta Magazineu003c/p>n”,”caption”:”u003cp>It’s exceptionally troublesome to twist two sheets of graphene precisely 1.1 levels out of alignment. However this “magic angle” results in extraordinary results. “I couldn’t imagine it,” mentioned one scientist. “I imply I really discovered it past perception.”u003c/p>n”,”mobile_comp_caption”:””,”mobile_comp_attribution”:””,”units”:[{“type”:”id”,”generated”:true,”id”:”$Post:71174.acf.modules.0.sets.0″,”typename”:”ImageSet”}],”__typename”:”ACFImageComponent”},”$Submit:71174.acf.modules.0.units.0″:{“settings”:””,”picture”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.picture”,”typename”:”Picture”},”mobile_image”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.mobile_image”,”typename”:”Picture”},”mobile_caption”:””,”mobile_attribution”:””,”zoom_image”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.zoom_image”,”typename”:”Picture”},”zoom_caption”:””,”zoom_attribution”:””,”mobile_zoom_image”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.mobile_zoom_image”,”typename”:”Picture”},”mobile_zoom_caption”:””,”mobile_zoom_attribution”:””,”external_link”:””,”__typename”:”ImageSet”},”$Submit:71174.acf.modules.0.units.0.picture”:{“alt”:”Artwork for “With a Easy Twist, a ‘Magic’ Materials Has Quietly Grow to be the Largest Factor in Physics””,”caption”:”It’s exceptionally troublesome to twist two sheets of graphene precisely 1.1 levels out of alignment. However this “magic angle” results in extraordinary results. “I couldn’t imagine it,” mentioned one scientist. “I imply I really discovered it past perception.””,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1800_Lede.gif”,”width”:2880,”top”:1800,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.picture.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.0.units.0.picture.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1800_Lede-520×325.gif”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1800_Lede-160×160.gif”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1800_Lede-520×520.gif”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1800_Lede-1720×1075.gif”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1800_Lede-768×480.gif”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_2880x1800_Lede-2880×1800.gif”,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.0.units.0.mobile_image”:{“alt”:”Artwork for “With a Easy Twist, a ‘Magic’ Materials Has Quietly Grow to be the Largest Factor in Physics””,”caption”:”It’s exceptionally troublesome to twist two sheets of graphene precisely 1.1 levels out of alignment. However this “magic angle” results in extraordinary results. “I couldn’t imagine it,” mentioned one scientist. “I imply I really discovered it past perception.””,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_Mobile.gif”,”width”:2200,”top”:1800,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.mobile_image.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.0.units.0.mobile_image.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_Mobile-520×425.gif”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_Mobile-160×160.gif”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_Mobile-520×520.gif”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_Mobile-1720×1407.gif”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_Mobile-768×628.gif”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Graphene_Angle_Mobile.gif”,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.0.units.0.zoom_image”:{“alt”:null,”caption”:null,”url”:null,”width”:null,”top”:null,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.zoom_image.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.0.units.0.zoom_image.sizes”:{“thumbnail”:null,”square_small”:null,”square_large”:null,”medium”:null,”medium_large”:null,”giant”:null,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.0.units.0.mobile_zoom_image”:{“alt”:null,”caption”:null,”url”:null,”width”:null,”top”:null,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.0.units.0.mobile_zoom_image.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.0.units.0.mobile_zoom_image.sizes”:{“thumbnail”:null,”square_small”:null,”square_large”:null,”medium”:null,”medium_large”:null,”giant”:null,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.1″:{“hide_this_component”:null,”acf_fc_layout”:”content_area”,”show_sidebars”:true,”content material”:”u003cp>u003ca href=”http://jarilloherrero.mit.edu/”>Pablo Jarillo-Herrerou003c/a> is channeling a few of his copious power right into a morning run, dodging startled pedestrians as he zips alongside, regularly disappearing into the space. He’d doubtlessly be shifting even sooner if he weren’t wearing a sports activities coat, slacks and gown footwear, and confined to one of many many weirdly lengthy corridors that crisscross the campus of the Massachusetts Institute of Expertise. However what he lacks in gear and roadway he makes up for in dedication, pushed by the data {that a} packed auditorium is ready for him to take the rostrum.u003c/p>nu003cp>Jarillo-Herrero has by no means been a slacker, however his exercise has jumped a number of ranges since his dramatic announcement in March 2018 that his lab at MIT had u003ca href=”https://www.nature.com/articles/nature26160″>discovered superconductivity in twisted bilayer grapheneu003c/a> — a one-atom-thick sheet of carbon crystal dropped on one other one, after which rotated to depart the 2 layers barely askew.u003c/p>nu003cp>The invention has been the largest shock to hit the solid-state physics subject for the reason that 2004 discovery that an intact sheet of carbon atoms — graphene — might be lifted off a block of graphite with a bit of Scotch tape, work that was later awarded the Nobel Prize. And it has ignited a frenzied race amongst condensed-matter physicists to discover, clarify and lengthen the MIT outcomes, which have since been duplicated in a number of labs.u003c/p>nu003cp>The commentary of superconductivity has created an sudden playground for physicists. The sensible objectives are apparent: to light up a path to higher-temperature superconductivity, to encourage new kinds of gadgets that may revolutionize electronics, or even perhaps to hasten the arrival of quantum computer systems. However extra subtly, and maybe extra vital, the invention has given scientists a comparatively easy platform for exploring unique quantum results. “There’s an virtually irritating abundance of riches for finding out novel physics within the magic-angle platform,” mentioned u003ca href=”http://www.deanlab.com/”>Cory Deanu003c/a>, a physicist at Columbia College who was among the many first to duplicate the analysis.u003c/p>nu003cdiv id=’component-60edf6ff81cd0′ class=””>u003cscript kind=”textual content/template”>{“kind”:”Picture”,”id”:”component-60edf6ff81cd0″,”knowledge”:{“id”:71179,”src”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press.jpg”,”alt”:”PORTRAIT: Pablo Jarillo-Herrero”,”class”:””,”width”:1200,”top”:780,”mobileSrc”:false,”zoomSrc”:false,”mobileZoomSrc”:false,”align”:”align=”proper””,”wrapper_width”:””,”caption”:”u003cp>Pablo Jarillo-Herrerou2019s work on twisted bilayer graphene has colleagues brazenly speculating a few Nobel Prize. u201cWe attempt to be adventurous on this lab, and we have now a great sense of odor,u201d he mentioned. u201cThis felt proper.u201du003c/p>n”,”attribution”:”u003cp>Bryce Vickmarku003c/p>n”,”variant”:”shortcode”,”measurement”:”huge”,”disableZoom”:true,”disableMobileZoom”:false,”srcImage”:{“ID”:71179,”id”:71179,”title”:”MIT-pablo-jarillo-herrero-02-Press”,”filename”:”MIT-pablo-jarillo-herrero-02-Press.jpg”,”filesize”:253703,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press.jpg”,”hyperlink”:”https://www.quantamagazine.org/how-twisted-graphene-became-the-big-thing-in-physics-20190430/mit-pablo-jarillo-herrero-02-press/”,”alt”:”PORTRAIT: Pablo Jarillo-Herrero”,”creator”:”13684″,”description”:”Bryce Vickmark”,”caption”:”Pablo Jarillo-Herrerou2019s work on twisted bilayer graphene has colleagues brazenly speculating a few Nobel prize. u201cWe attempt to be adventurous on this lab, and we have now a great sense of odor,u201d he mentioned. u201cThis felt proper.u201d”,”identify”:”mit-pablo-jarillo-herrero-02-press”,”standing”:”inherit”,”uploaded_to”:71174,”date”:”2019-04-29 14:44:29″,”modified”:”2019-04-29 14:45:23″,”menu_order”:0,”mime_type”:”picture/jpeg”,”kind”:”picture”,”subtype”:”jpeg”,”icon”:”https://api.quantamagazine.org/wp-includes/photos/media/default.png”,”width”:1200,”top”:780,”sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press-520×338.jpg”,”thumbnail-width”:520,”thumbnail-height”:338,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press.jpg”,”medium-width”:1200,”medium-height”:780,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press-768×499.jpg”,”medium_large-width”:768,”medium_large-height”:499,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press.jpg”,”large-width”:1200,”large-height”:780,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press-160×160.jpg”,”square_small-width”:160,”square_small-height”:160,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/MIT-pablo-jarillo-herrero-02-Press-520×520.jpg”,”square_large-width”:520,”square_large-height”:520}},”largeForPrint”:false,”externalLink”:””,”original_resolution”:false}}u003c/script>u003c/div>nu003cp>All this has left Jarillo-Herrero struggling to maintain up with the calls for of all of a sudden being out in entrance of a red-hot subject that has already garnered its personal identify — “twistronics.” “Most likely greater than 30 teams are beginning to work on it,” he mentioned. “In three years it is going to be 100. The sphere is actually exploding.” Effectively, perhaps not actually, however in each different means, it appears. He’s so swamped with requests to share his strategies and provides talks that just about tripling his talking schedule has barely made a dent within the circulation of invitations. Even his college students are turning down talking gives. On the American Bodily Society annual assembly in March it was standing room solely at his session, leaving a crowd exterior the doorways hoping to catch snatches of the discuss.u003c/p>nu003cp>To tease out the startling commentary, his group needed to nail down a exact and dauntingly elusive twist within the layers of virtually precisely 1.1 levels. That “magic” angle had lengthy been suspected to be of particular curiosity in twisted bilayer graphene. However nobody had predicted it will be u003cem>thatu003c/em> fascinating. “It could have been loopy to foretell superconductivity primarily based on what we knew,” mentioned u003ca href=”https://graphene.nus.edu.sg/team_member/antonio-castro-neto/”>Antonio Castro Netou003c/a>, a physicist on the Nationwide College of Singapore. “However science strikes ahead not once we perceive one thing, it’s when one thing completely sudden occurs in experiment.”u003c/p>nu003ch2>Past Beliefu003c/h2>nu003cp>Castro Neto would know. In 2007 he u003ca href=”https://arxiv.org/abs/0704.2128″>suggestedu003c/a> that urgent two misaligned graphene sheets collectively would possibly produce some novel properties. (He later recommended that graphene would possibly conceivably turn out to be superconducting beneath some particular circumstances. “I simply by no means put the 2 concepts collectively,” he mentioned, wistfully.)u003c/p>nu003cp>A number of teams within the U.S. and Europe have been quickly finding out the properties of twisted bilayer graphene, and in 2011, u003ca href=”https://web2.ph.utexas.edu/~macdgrp/”>Allan MacDonaldu003c/a>, a theoretical physicist on the College of Texas, Austin, urged his colleagues to hunt for fascinating conduct at a selected “magic angle.” Like different theorists, MacDonald had targeted on how the misalignment of the 2 sheets creates an angle-dependent moiré sample — that’s, a periodic grid of comparatively big cells, every of which consists of 1000’s of graphene crystal cells within the two sheets. However the place others had been scuffling with the big computational complexity of figuring out how an electron could be affected by the 1000’s of atoms in a moiré cell, MacDonald hit on a simplifying idea.u003c/p>nu003cp>He reckoned the moiré cell itself would have one property that different strictly with rotation angle, roughly independently of the small print of the atoms that made it up. That property was a vital one: the quantity of power a free electron within the cell must acquire or shed to tunnel between the 2 graphene sheets. That power distinction was normally sufficient to function a barrier to intersheet tunneling. However MacDonald calculated that because the rotation angle narrowed from a bigger one, the tunneling power would shrink, lastly disappearing altogether at precisely 1.1 levels.u003c/p>n”,”fadein”:false,”__typename”:”ACFContent”},”$Submit:71174.acf.modules.2″:{“hide_this_component”:null,”acf_fc_layout”:”image_component”,”structure”:”common”,”settings”:”print_large”,”attribution”:”u003cp>u003ca href=”https://www.5wgraphics.com/”>5W Infographicsu003c/a> for Quanta Magazineu003c/p>n”,”caption”:””,”mobile_comp_caption”:””,”mobile_comp_attribution”:””,”units”:[{“type”:”id”,”generated”:true,”id”:”$Post:71174.acf.modules.2.sets.0″,”typename”:”ImageSet”}],”__typename”:”ACFImageComponent”},”$Submit:71174.acf.modules.2.units.0″:{“settings”:”enable_zoom”,”picture”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.picture”,”typename”:”Picture”},”mobile_image”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.mobile_image”,”typename”:”Picture”},”mobile_caption”:””,”mobile_attribution”:””,”zoom_image”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.zoom_image”,”typename”:”Picture”},”zoom_caption”:””,”zoom_attribution”:””,”mobile_zoom_image”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.mobile_zoom_image”,”typename”:”Picture”},”mobile_zoom_caption”:””,”mobile_zoom_attribution”:””,”external_link”:””,”__typename”:”ImageSet”},”$Submit:71174.acf.modules.2.units.0.picture”:{“alt”:”GRAPHIC: GRAPHENE’S MAGICAL PATTERNS”,”caption”:”Graphene is a flat sheet of carbon atoms that kind a honeycomb lattice. In case you take two graphene sheets, stack them on prime of one another, and twist them at a slight angle, the lattices will naturally create a moiré sample. When the angle between the 2 sheets is strictly 1.1 levels — the margin for error is lower than a fraction of a level — the stacked graphene sheets reveal distinctive properties, together with superconductivity. nnThe moiré sample mirrors the hexagonal construction of the carbon atoms. (The diagonal traces are one other pure artifact.) n”,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-FINAL4-920px.jpg”,”width”:1840,”top”:1870,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.picture.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.2.units.0.picture.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-FINAL4-920px-512×520.jpg”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-FINAL4-920px-160×160.jpg”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-FINAL4-920px-520×520.jpg”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-FINAL4-920px-1692×1720.jpg”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-FINAL4-920px-768×781.jpg”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-FINAL4-920px.jpg”,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.2.units.0.mobile_image”:{“alt”:”GRAPHIC: GRAPHENE’S MAGICAL PATTERNS”,”caption”:”Graphene is a flat sheet of carbon atoms that kind a honeycomb lattice. In case you take two graphene sheets, stack them on prime of one another, and twist them at a slight angle, the lattices will naturally create a moiré sample. When the angle between the 2 sheets is strictly 1.1 levels — the margin for error is lower than a fraction of a level — the stacked graphene sheets reveal distinctive properties, together with superconductivity. nnThe moiré sample mirrors the hexagonal construction of the carbon atoms. (The diagonal traces are one other pure artifact.) n”,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-560px_v03.jpg”,”width”:1120,”top”:1936,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.mobile_image.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.2.units.0.mobile_image.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-560px_v03-301×520.jpg”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-560px_v03-160×160.jpg”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-560px_v03-520×520.jpg”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-560px_v03-995×1720.jpg”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-560px_v03-768×1328.jpg”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Magic-Graphene-Graphic-560px_v03.jpg”,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.2.units.0.zoom_image”:{“alt”:null,”caption”:null,”url”:null,”width”:null,”top”:null,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.zoom_image.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.2.units.0.zoom_image.sizes”:{“thumbnail”:null,”square_small”:null,”square_large”:null,”medium”:null,”medium_large”:null,”giant”:null,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.2.units.0.mobile_zoom_image”:{“alt”:null,”caption”:null,”url”:null,”width”:null,”top”:null,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.acf.modules.2.units.0.mobile_zoom_image.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.acf.modules.2.units.0.mobile_zoom_image.sizes”:{“thumbnail”:null,”square_small”:null,”square_large”:null,”medium”:null,”medium_large”:null,”giant”:null,”__typename”:”ImageSizes”},”$Submit:71174.acf.modules.3″:{“hide_this_component”:null,”acf_fc_layout”:”content_area”,”show_sidebars”:false,”content material”:”u003cp>As that tunneling power turned small, the electrons within the sheets would decelerate and turn out to be strongly correlated with each other. MacDonald didn’t know precisely what would occur then. Maybe the extremely conductive graphene sheets would flip into insulators, he speculated, or the twist would evoke magnetic properties. “I frankly didn’t have the instruments to essentially say for certain what would occur on this form of strongly correlated system,” mentioned MacDonald. “Definitely superconducting is the factor you most hope to see, however I didn’t have the nerve to foretell it.”u003c/p>nu003cp>MacDonald’s concepts largely fell flat. When he submitted his paper for publication, reviewers dinged his simplifying assumptions as implausible, and the paper was rejected by a number of journals earlier than u003ca href=”https://doi.org/10.1073/pnas.1108174108″>touchdown within the u003cem>Proceedings of the Nationwide Academy of Sciencesu003c/em>u003c/a>. Then after it did come out, few experimentalists went after it. “I wasn’t certain what we’d get from it,” mentioned Dean. “It felt like conjecture, so we put it apart.”u003c/p>nu003cdiv id=’component-60edf6ff89cfa’ class=””>u003cscript kind=”textual content/template”>{“kind”:”Blockquote”,”id”:”component-60edf6ff89cfa”,”knowledge”:{“quote”:”u003cp>Science strikes ahead not once we perceive one thing, itu2019s when one thing completely sudden occurs in experiment.u003c/p>n”,”alignment”:”proper”,”quote_attribution”:”u003cp>Antonio Castro Netou003c/p>n”,”twitter_text”:””}}u003c/script>u003c/div>nu003cp>Additionally gradual to pursue the magic angle was u003ca href=”http://kim.physics.harvard.edu/”>Philip Kimu003c/a>, a physicist at Harvard College and a form of dean of the experimental twisted bilayer graphene subject. (Each Dean and Jarillo-Herrero have been postdocs in his lab.) “I believed Allan’s concept was too easy,” he mentioned. “And like most experimenters, I believed it most likely wasn’t potential to regulate the angle effectively sufficient. Folks began to neglect about it.” In reality, mentioned Kim, he and lots of others within the subject have been nearly prepared to maneuver on from twisted bilayer graphene altogether, feeling different novel supplies would possibly current extra thrilling alternatives.u003c/p>nu003cp>Not Jarillo-Herrero. He had already been engaged on twisted bilayer graphene for a yr when MacDonald’s prediction was revealed in 2011, and he was satisfied there was one thing to it — even after a colleague tried to warn him off it as a possible waste of time. “We attempt to be adventurous on this lab, and we have now a great sense of odor,” mentioned Jarillo-Herrero. “This felt proper.”u003c/p>nu003cp>The problem, he knew, could be to create an ultraclean, extremely homogeneous pair of graphene sheets that overcome the fabric’s pure opposition to holding a 1.1-degree angle. Graphene sheets present a powerful tendency to drag into alignment with one another. And when pressured into an offset place, the superflexible sheets are inclined to deform.u003c/p>nu003cp>Jarillo-Herrero’s group went about sprucing each side of the fabrication course of: from creating and cleansing the sheets, to lining them up at simply the suitable angle, to urgent them into place. The measurements needed to be finished in close to vacuum to stop contamination, and the outcomes needed to be cooled to inside a couple of levels of absolute zero to have a great probability of seeing correlated electron conduct — at greater temperatures the electrons transfer too energetically to have an opportunity to strongly work together.u003c/p>nu003cp>The lab produced dozens of twisted bilayer graphene “gadgets,” as researchers name them, however none of them confirmed vital proof of electron correlation. Then, in 2014, certainly one of his college students introduced him a tool that when uncovered to an electrical subject confirmed indicators of distinctly ungraphene-like insulating properties. Jarillo-Herrero merely put the system apart and continued making new ones. “Our gadgets are difficult. You’ll be able to have flipped edges and different flaws that give bizarre outcomes that don’t have anything to do with new physics,” he explains. “In case you see one thing fascinating as soon as, you don’t take note of it. In case you see it once more, you listen.”u003c/p>nu003cdiv id=’component-60edf6ff8d5e9′ class=””>u003cscript kind=”textual content/template”>{“kind”:”Picture”,”id”:”component-60edf6ff8d5e9″,”knowledge”:{“id”:71188,”src”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture.jpg”,”alt”:”IMAGE: optical microscope image of magic angle graphene gadgets”,”class”:””,”width”:2000,”top”:1485,”mobileSrc”:false,”zoomSrc”:false,”mobileZoomSrc”:false,”align”:”align=”inline””,”wrapper_width”:””,”caption”:”u003cp>A twisted bilayer graphene u201cdeviceu201d consists of stacked graphene sheets (the darkish materials within the heart of the picture) related to numerous electrodes (yellow). By various the voltage within the electrodes, researchers can management {the electrical} properties of the bilayer graphene.u003c/p>n”,”attribution”:”u003cp>Jarillo-Herrero Labu003c/p>n”,”variant”:”shortcode”,”measurement”:”huge”,”disableZoom”:false,”disableMobileZoom”:false,”srcImage”:{“ID”:71188,”id”:71188,”title”:”Microscope-Picture”,”filename”:”Microscope-Picture.jpg”,”filesize”:310307,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture.jpg”,”hyperlink”:”https://www.quantamagazine.org/how-twisted-graphene-became-the-big-thing-in-physics-20190430/microscope-image/”,”alt”:”IMAGE: optical microscope image of magic angle graphene gadgets”,”creator”:”13684″,”description”:”Jarillo-Herrero Lab”,”caption”:”A twisted bilayer graphene u201cdeviceu201d consists of stacked graphene sheets (the darkish materials within the heart of the picture) related to numerous electrodes (yellow). By various the voltage within the electrodes, researchers can management {the electrical} properties of the bilayer graphene. “,”identify”:”microscope-image”,”standing”:”inherit”,”uploaded_to”:71174,”date”:”2019-04-29 15:00:26″,”modified”:”2019-04-29 15:01:03″,”menu_order”:0,”mime_type”:”picture/jpeg”,”kind”:”picture”,”subtype”:”jpeg”,”icon”:”https://api.quantamagazine.org/wp-includes/photos/media/default.png”,”width”:2000,”top”:1485,”sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture-520×386.jpg”,”thumbnail-width”:520,”thumbnail-height”:386,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture-1720×1277.jpg”,”medium-width”:1720,”medium-height”:1277,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture-768×570.jpg”,”medium_large-width”:768,”medium_large-height”:570,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture.jpg”,”large-width”:2000,”large-height”:1485,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture-160×160.jpg”,”square_small-width”:160,”square_small-height”:160,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/Microscope-Picture-520×520.jpg”,”square_large-width”:520,”square_large-height”:520}},”largeForPrint”:false,”externalLink”:””,”original_resolution”:false}}u003c/script>u003c/div>nu003cp>In the summertime of 2017, doctoral scholar u003ca href=”http://net.mit.edu/caoyuan/www/”>Yuan Caou003c/a>, who on the age of 21 was already in his third yr of graduate college at MIT, introduced Jarillo-Herrero a brand new system that gave him cause to concentrate. As earlier than, an electrical subject switched the system into an insulator. However this time they tried cranking up the sphere greater, and it all of a sudden switched once more — right into a superconductor.u003c/p>nu003cp>The lab spent the following six months duplicating the outcomes and nailing down measurements. The work was finished in strict secrecy, a break from the sometimes extremely open and collaborative tradition of the twisted bilayer graphene subject. “I had no means of understanding who else may be near superconductivity,” mentioned Jarillo-Herrero. “We share concepts and knowledge on a regular basis on this subject, however we’re additionally very aggressive.”u003c/p>nu003cp>In January 2018, with a paper ready, he referred to as an editor at u003cem>Natureu003c/em>, defined what he had, and made his submission contingent on the journal agreeing to a one-week assessment course of — a good friend had instructed him one of many seminal CRISPR papers had obtained that extraordinary therapy. The journal agreed, and the paper flew via the push assessment.u003c/p>nu003cp>Jarillo-Herrero despatched a prepublication electronic mail heads-up to MacDonald, who hadn’t even recognized that Jarillo-Herrero had been doggedly pursuing the magic angle. “I couldn’t imagine it,” mentioned MacDonald. “I imply I really discovered it past perception.” Dean discovered about it together with the remainder of the physics group at a convention in March 2018, proper across the time that the u003cem>Natureu003c/em> paper got here out. “The outcomes proved me spectacularly incorrect,” Dean mentioned.u003c/p>nu003ch2>The Excellent Playgroundu003c/h2>nu003cp>Physicists are enthusiastic about magic-angle twisted bilayer graphene not as a result of it’s more likely to be a sensible superconductor however as a result of they’re satisfied it will possibly illuminate the mysterious properties of superconductivity itself. For one factor, the fabric appears to behave suspiciously like a u003ca href=”https://www.quantamagazine.org/mega-magnet-reveals-superconductor-secret-20160222/”>cuprateu003c/a>, a kind of unique ceramic through which superconductivity can happen at temperatures as much as about 140 kelvin, or midway between absolute zero and room temperature. As well as, the sudden jumps in twisted bilayer graphene — from conducting to insulating to superconducting — with only a tweak of an exterior electrical subject point out that free electrons are slowing to a digital halt, notes physicist u003ca href=”http://efetovlab.icfo.eu/”>Dmitri Efetovu003c/a> of the Institute of Photonic Sciences (ICFO) in Barcelona, Spain. “Once they cease, [the electrons] work together all of the extra strongly,” he mentioned. “Then they will pair up and kind a superfluid.” That fluidlike electron state is taken into account a core function of all superconductors.u003c/p>nu003cdiv id=’component-60edf6ff8d781′ class=””>u003cscript kind=”textual content/template”>{“kind”:”Blockquote”,”id”:”component-60edf6ff8d781″,”knowledge”:{“quote”:”u003cp>Pandorau2019s field has been opened.u003c/p>n”,”alignment”:”proper”,”quote_attribution”:”u003cp>Dmitri Efetovu003c/p>n”,”twitter_text”:””}}u003c/script>u003c/div>nu003cp>The principle cause 30 years of finding out cuprates has shed comparatively little mild on the phenomenon is that cuprates are advanced, multi-element crystals. “They’re poorly understood supplies,” mentioned Efetov, noting that they superconduct solely when exactly doped with impurities throughout their demanding fabrication with the intention to add free electrons. Twisted bilayer graphene, then again, is nothing however carbon, and “doping” it with extra electrons merely requires making use of a readily different electrical subject. “If there’s any system the place we are able to hope to know strongly correlated electrons, it’s this one,” mentioned Jarillo-Herrero. “As a substitute of getting to develop totally different crystals, we simply flip a voltage knob, or apply extra strain with the stamps, or change the rotation angle.” A scholar can attempt to change the doping in an hour at just about no price, he notes, versus the months and tens of 1000’s of {dollars} it’d take to check out a barely totally different doping scheme on a cuprate.u003c/p>nu003cp>Additionally distinctive, mentioned MacDonald, is the small variety of electrons that appear to be doing the heavy lifting in magic-angle twisted bilayer graphene — about one for each 100,000 carbon atoms. “It’s unprecedented to see superconducting at such a low density of electrons,” he mentioned. “It’s decrease than anything we’ve seen by a minimum of an order of magnitude.” Over 100 papers have popped up on the scientific preprint server arxiv.org that provide theories to clarify what may be happening in magic-angle twisted bilayer graphene. u003ca href=”https://phy.princeton.edu/individuals/bogdan-bernevig”>Andrei Bernevigu003c/a>, a theoretical physicist at Princeton College, calls it “an ideal playground” for exploring correlated physics.u003c/p>nu003cp>Physicists appear desperate to play on it. Apart from with the ability to flip between extremes in conductivity with a literal push of a button, notes u003ca href=”https://phynano.c2n.universite-paris-saclay.fr/en/members/rebeca-ribeiro-palau/”>Rebeca Ribeiro-Palauu003c/a>, a physicist on the Middle for Nanoscience and Nanotechnology close to Paris, there’s already good proof that twisted bilayer graphene’s magnetic, thermal and optical properties could be nudged into unique behaviors as simply as its digital properties can. “In precept you may change any property of matter on and off,” she mentioned. MacDonald factors out, for instance, that a few of the insulating states in twisted bilayer graphene look like accompanied by magnetism that arises not from the quantum spin states of the electrons, as is often the case, however solely from their orbital angular momentum — a theorized however never-before-observed kind of magnetism.u003c/p>nu003ch2>The Coming Age of Twistronicsu003c/h2>nu003cp>Now that Jarillo-Herrero’s group has confirmed that magic angles are a factor, physicists try to use the twistronics strategy to different configurations of graphene. Kim’s group has been experimenting with twisting two double-layers of graphene and has already discovered u003ca href=”https://arxiv.org/abs/1903.08130″>evidenceu003c/a> of superconductivity and correlated physics. Others are stacking up three or extra layers of graphene within the hopes of gaining superconductivity at different magic angles, or even perhaps when they’re aligned. Bernevig posits that because the layers stack up greater and better, physicists might be able to get the superconductivity temperature to climb together with it. Different magic angles might play a task, too. Some teams are squeezing the sheets extra tightly collectively with the intention to improve the magic angle, making it simpler to realize, whereas MacDonald suggests even richer physics might emerge at smaller, if a lot more durable to focus on, magic angles.u003c/p>nu003cdiv id=’component-60edf6ff8d91b’ class=””>u003cscript kind=”textual content/template”>{“kind”:”Blockquote”,”id”:”component-60edf6ff8d91b”,”knowledge”:{“quote”:”u003cp>I canu2019t discover phrases to explain how profound that’s. Iu2019d should make one thing up.u003c/p>n”,”alignment”:”proper”,”quote_attribution”:”u003cp>Cory Deanu003c/p>n”,”twitter_text”:””}}u003c/script>u003c/div>nu003cp>In the meantime, different supplies are coming into the twistronics image. Semiconductors and transitional metals could be deposited in twisted layers and are seen pretty much as good candidates for correlated physics — maybe higher than twisted bilayer graphene. “Individuals are pondering of tons of of supplies than could be manipulated this manner,” mentioned Efetov. “Pandora’s field has been opened.”u003c/p>nu003cp>Dean and Efetov are amongst these sticking with what would possibly already be referred to as traditional twistronics, within the hopes of boosting correlated results in magic-angle twisted bilayer graphene gadgets by actually smoothing out the wrinkles of their fabrication. As a result of there’s no chemical bonding to talk of between the 2 layers, and since the marginally offset layers attempt to settle into alignment, forcing them to carry a magic-angle twist creates stresses that result in submicroscopic hills, valleys and bends. These native distortions imply that some areas of the system may be throughout the magic vary of twist angles, whereas different areas usually are not. “I’ve tried gluing the sides of the layers, however there are nonetheless native variations,” he complained. “Now I’m attempting to determine methods to attenuate the preliminary pressure when the layers are pressed collectively.” Efetov has u003ca href=”https://arxiv.org/abs/1903.06513″>not too long ago reported progressu003c/a> in doing simply that, and the outcomes have already paid off in new superconducting states at temperatures of about 3 levels kelvin, or twice as excessive as beforehand noticed.u003c/p>nu003cp>Having burst far out into the lead of the twisted bilayer graphene subject in beautiful style, Jarillo-Herrero isn’t sitting again and ready for others to catch up. His lab’s foremost focus stays attempting to coax ever extra unique conduct out of twisted bilayer graphene, benefiting from the truth that via lengthy trial and error he’s boosted his yield of superconducting samples to almost 50 %. Most different teams are scuffling with yields a tenth of that or much less. Provided that it takes about two weeks to manufacture and take a look at a tool, that’s an infinite productiveness edge. “We expect we’re simply starting to see all of the fascinating states that can come out of those magic-angle graphene methods,” he mentioned. “There’s an enormous section house to discover.” However to cowl his bases, he’s pulled his lab into additionally exploring twistronics in different supplies.u003c/p>nu003cdiv id=’component-60edf6ff8e7f2′ class=”related-list”>u003cscript kind=”textual content/template”>{“kind”:”LinkList”,”id”:”component-60edf6ff8e7f2″,”knowledge”:{“title”:”Associated:”,”class”:”related-list”,”hyperlinks”:[{“type”:”internal”,”link”:”https://www.quantamagazine.org/quantum-scarring-appears-to-defy-universes-push-for-disorder-20190320/”,”title”:”Quantum Machine Appears to Defy Universeu2019s Push for Disorder”},{“type”:”internal”,”link”:”https://www.quantamagazine.org/a-childs-puzzle-has-helped-unlock-the-secrets-of-magnetism-20190124/”,”title”:”A Childu2019s Puzzle Has Helped Unlock the Secrets of Magnetism”},{“type”:”internal”,”link”:”https://www.quantamagazine.org/universal-quantum-phenomenon-found-in-superconductors-20181119/”,”title”:”Universal Quantum Phenomenon Found in Strange Metals”},{“type”:”internal”,”link”:”https://www.quantamagazine.org/samarium-hexaboride-crystal-blurs-metal-insulator-line-20150702/”,”title”:”Paradoxical Crystal Baffles Physicists”},{“type”:”internal”,”link”:”https://www.quantamagazine.org/mega-magnet-reveals-superconductor-secret-20160222/”,”title”:”The Quantum Secret to Superconductivity”}]}}u003c/script>u003c/div>nu003cp>The stakes within the race to give you simpler to make, higher performing, higher-temperature superconductors are enormous. Other than the oft-evoked imaginative and prescient of levitating trains, decreasing the power loss in electrical energy transmission would enhance economies and sharply lower dangerous emissions world wide. Qubit fabrication might all of a sudden turn out to be sensible, maybe ushering within the rise of quantum computer systems. Even with out superconductivity, abnormal computer systems and different electronics might get an enormous enhance in efficiency versus price from twistronics, resulting from the truth that complete advanced digital circuits might in concept be constructed into a couple of sheets of pure carbon, without having a dozen or extra complexly etched layers of difficult supplies frequent to right this moment’s chips. “You might combine wildly totally different properties of matter into these circuits proper subsequent to 1 one other, and differ them with native electrical fields,” mentioned Dean. “I can’t discover phrases to explain how profound that’s. I’d should make one thing up. Possibly dynamic materials engineering?”u003c/p>nu003cp>Nevertheless such hopes finally pan out, for now the thrill in twisted bilayer graphene appears solely to be constructing. “Some could also be shy to say it, however I’m not,” mentioned Castro Neto. “If the sphere retains going the best way it’s now, anyone goes to get a Nobel Prize out of this.” That form of discuss might be untimely, however even with out it there’s loads of strain on Jarillo-Herrero. “What my lab did creates unrealistic expectations,” he admits. “Everybody appears to suppose we’re going to provide a brand new breakthrough yearly.” He’s actually decided to make additional vital contributions, he mentioned, however he predicts that regardless of the subsequent electrifying discovery is, it’s as probably come out of a unique lab as it’s his. “I’ve already accepted that as a reality, and I’m wonderful with it,” he mentioned. “It could be boring to be in a subject the place you’re the one one advancing it.”u003c/p>nu003cp>u003cem>Clarification March 9, 2019: An earlier model of this text referred to the “2004 Nobel Prize–successful discovery” of graphene. The invention was made in 2004, however the Nobel Prize got here later. The sentence has been revised to make this clear.u003c/em>u003c/p>n”,”fadein”:false,”__typename”:”ACFContent”},”$Submit:71174.acf.sequence”:{“identify”:null,”hyperlink”:null,”__typename”:”Time period”},”$Submit:71174.attachments”:{“pdf”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/how-twisted-graphene-became-the-big-thing-in-physics-20190430.pdf”,”__typename”:”Attachments”},”$Submit:71174.subsequent.knowledge.0″:{“title”:”Darkish Matter Will get a Reprieve in New Evaluation”,”hyperlink”:”https://www.quantamagazine.org/dark-matter-gets-a-reprieve-in-new-analysis-20190429/”,”classes”:[{“type”:”id”,”generated”:true,”id”:”$Post:71174.next.data.0.categories.0″,”typename”:”Term”},{“type”:”id”,”generated”:true,”id”:”$Post:71174.next.data.0.categories.1″,”typename”:”Term”}],”featured_media_image”:null,”acf”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.subsequent.knowledge.0.acf”,”typename”:”ACFFields”},”__typename”:”Submit”},”$Submit:71174.subsequent.knowledge.0.classes.0″:{“slug”:”abstractions”,”__typename”:”Time period”},”$Submit:71174.subsequent.knowledge.0.classes.1″:{“slug”:”physics”,”__typename”:”Time period”},”$Submit:71174.subsequent.knowledge.0.acf”:{“template”:”article”,”featured_block_title”:””,”featured_image_gif”:false,”featured_image_default”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.subsequent.knowledge.0.acf.featured_image_default”,”typename”:”Picture”},”featured_image_full_width”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.subsequent.knowledge.0.acf.featured_image_full_width”,”typename”:”Picture”},”__typename”:”ACFFields”},”$Submit:71174.subsequent.knowledge.0.acf.featured_image_default”:{“alt”:”Artwork for “Darkish Matter Will get a Reprieve in New Evaluation””,”caption”:”A view of the middle of the Milky Method as seen in infrared mild. An unexplained gamma-ray glow coming from the area has fueled a decade-old thriller.”,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_520x292.jpg”,”width”:520,”top”:292,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.subsequent.knowledge.0.acf.featured_image_default.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.subsequent.knowledge.0.acf.featured_image_default.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_520x292-520×292.jpg”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_520x292-160×160.jpg”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_520x292-520×292.jpg”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_520x292.jpg”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_520x292.jpg”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_520x292.jpg”,”__typename”:”ImageSizes”},”$Submit:71174.subsequent.knowledge.0.acf.featured_image_full_width”:{“alt”:”Artwork for “Darkish Matter Will get a Reprieve in New Evaluation””,”caption”:”A view of the middle of the Milky Method as seen in infrared mild. An unexplained gamma-ray glow coming from the area has fueled a decade-old thriller.”,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_2880x1220-HP.jpg”,”width”:2880,”top”:1220,”sizes”:{“kind”:”id”,”generated”:true,”id”:”$Submit:71174.subsequent.knowledge.0.acf.featured_image_full_width.sizes”,”typename”:”ImageSizes”},”__typename”:”Picture”},”$Submit:71174.subsequent.knowledge.0.acf.featured_image_full_width.sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_2880x1220-HP-520×220.jpg”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_2880x1220-HP-160×160.jpg”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_2880x1220-HP-520×520.jpg”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_2880x1220-HP-1720×729.jpg”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_2880x1220-HP-768×325.jpg”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2019/04/DMReturns_2880x1220-HP-2880×1220.jpg”,”__typename”:”ImageSizes”},”$Submit:71174.subsequent”:{“knowledge”:[{“type”:”id”,”generated”:true,”id”:”$Post:71174.next.data.0″,”typename”:”Post”}],”__typename”:”PostPageArchive”}}rnnn”,”settings”:{“socialLinks”:[{“type”:”facebook”,”label”:”Facebook”,”url”:”https://www.facebook.com/QuantaNews”,”__typename”:”SocialMediaLink”},{“type”:”twitter”,”label”:”Twitter”,”url”:”https://twitter.com/QuantaMagazine”,”__typename”:”SocialMediaLink”},{“type”:”youtube”,”label”:”YouTube”,”url”:”http://youtube.com/c/QuantamagazineOrgNews”,”__typename”:”SocialMediaLink”},{“type”:”instagram”,”label”:”Instagram”,”url”:”https://instagram.com/quantamag”,”__typename”:”SocialMediaLink”},{“type”:”rss”,”label”:”RSS”,”url”:”https://api.quantamagazine.org/feed/”,”__typename”:”SocialMediaLink”}],”newsletterAction”:”https://quantamagazine.us1.list-manage.com/subscribe/publish?u=0d6ddf7dc1a0b7297c8e06618&id=f0cb61321c”,”newsletterUrl”:”http://us1.campaign-archive2.com/dwelling/?u=0d6ddf7dc1a0b7297c8e06618&id=f0cb61321c”,”commentsHeader”:”

n”,”itunesSubscribe”:”https://itunes.apple.com/us/podcast/quanta-science-podcast/id1021340531?mt=2&ls=1″,”androidSubscribe”:”https://podcasts.google.com/feed/aHR0cHM6Ly93d3cucXVhbnRhbWFnYXppbmUub3JnL2ZlZWQvcG9kY2FzdC8″,”spotifySubscribe”:”https://open.spotify.com/present/7oKXOpbHzbICFUcJNbZ5wF”,”itunesJoyOfX”:”https://podcasts.apple.com/us/podcast/the-joy-of-x/id1495067186″,”androidJoyOfX”:”https://podcasts.google.com/feed/aHR0cHM6Ly9hcGkucXVhbnRhbWFnYXppbmUub3JnL2ZlZWQvdGhlLWpveS1vZi14Lw”,”spotifyJoyOfX”:”https://open.spotify.com/present/5HcCtKPH5gnOjRiMtTdC07″,”popularSearches”:[{“term”:”math”,”label”:”Mathematics”,”__typename”:”PopularSearch”},{“term”:”physics”,”label”:”Physics”,”__typename”:”PopularSearch”},{“term”:”black holes”,”label”:”Black Holes”,”__typename”:”PopularSearch”},{“term”:”evolution”,”label”:”Evolution”,”__typename”:”PopularSearch”}],”searchTopics”:[{“type”:”Tag”,”label”:”Podcasts”,”tag”:{“name”:”podcast”,”slug”:”podcast”,”term_id”:”552″,”__typename”:”Term”},”category”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”Tag”,”label”:”Columns”,”tag”:{“name”:”Quantized Columns”,”slug”:”quantized”,”term_id”:”551″,”__typename”:”Term”},”category”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”Series”,”label”:”Series”,”tag”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”category”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”Category”,”label”:”Interviews”,”tag”:{“name”:”Q&A”,”slug”:”qa”,”term_id”:”567″,”__typename”:”Term”},”category”:{“name”:”Q&A”,”slug”:”qa”,”term_id”:”176″,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”Category”,”label”:”Multimedia”,”tag”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”category”:{“name”:”Multimedia”,”slug”:”multimedia”,”term_id”:”43″,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”Category”,”label”:”Puzzles”,”tag”:{“name”:”puzzles”,”slug”:”puzzles”,”term_id”:”542″,”__typename”:”Term”},”category”:{“name”:”Puzzles”,”slug”:”puzzles”,”term_id”:”546″,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”Category”,”label”:”Blog Posts”,”tag”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”category”:{“name”:”Abstractions blog”,”slug”:”abstractions”,”term_id”:”619″,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”news”,”label”:”News Articles”,”tag”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”category”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”__typename”:”SearchTopic”},{“type”:”videos”,”label”:”Videos”,”tag”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”category”:{“name”:null,”slug”:null,”term_id”:null,”__typename”:”Term”},”__typename”:”SearchTopic”}],”searchSections”:[{“name”:”Mathematics”,”slug”:”mathematics”,”term_id”:”188″,”__typename”:”Term”},{“name”:”Physics”,”slug”:”physics”,”term_id”:”189″,”__typename”:”Term”},{“name”:”Biology”,”slug”:”biology”,”term_id”:”191″,”__typename”:”Term”},{“name”:”Computer Science”,”slug”:”computer-science”,”term_id”:”190″,”__typename”:”Term”}],”searchAuthors”:[{“id”:”28087″,”name”:”Adam Mann”,”__typename”:”AuthorList”},{“id”:”29794″,”name”:”Alex Kontorovich”,”__typename”:”AuthorList”},{“id”:”56″,”name”:”Alla Katsnelson”,”__typename”:”AuthorList”},{“id”:”29458″,”name”:”Allison Whitten”,”__typename”:”AuthorList”},{“id”:”73″,”name”:”Amanda Gefter”,”__typename”:”AuthorList”},{“id”:”59″,”name”:”Andreas von Bubnoff”,”__typename”:”AuthorList”},{“id”:”8728″,”name”:”Anil Ananthaswamy”,”__typename”:”AuthorList”},{“id”:”11648″,”name”:”Ann Finkbeiner”,”__typename”:”AuthorList”},{“id”:”95″,”name”:”Ariel Bleicher”,”__typename”:”AuthorList”},{“id”:”15493″,”name”:”Ashley Smart”,”__typename”:”AuthorList”},{“id”:”450″,”name”:”Ashley Yeager”,”__typename”:”AuthorList”},{“id”:”16315″,”name”:”Bill Andrews”,”__typename”:”AuthorList”},{“id”:”2752″,”name”:”Bob Henderson”,”__typename”:”AuthorList”},{“id”:”15492″,”name”:”Brendan Z. Foster”,”__typename”:”AuthorList”},{“id”:”68″,”name”:”Brooke Borel”,”__typename”:”AuthorList”},{“id”:”62″,”name”:”Carl Zimmer”,”__typename”:”AuthorList”},{“id”:”13691″,”name”:”Caroline Lee”,”__typename”:”AuthorList”},{“id”:”50″,”name”:”Carrie Arnold”,”__typename”:”AuthorList”},{“id”:”15142″,”name”:”Chanda Prescod-Weinstein”,”__typename”:”AuthorList”},{“id”:”8084″,”name”:”Charlie Wood”,”__typename”:”AuthorList”},{“id”:”742″,”name”:”Christie Wilcox”,”__typename”:”AuthorList”},{“id”:”11543″,”name”:”Claudia Dreifus”,”__typename”:”AuthorList”},{“id”:”57″,”name”:”Courtney Humphries”,”__typename”:”AuthorList”},{“id”:”7262″,”name”:”Dalmeet Singh Chawla”,”__typename”:”AuthorList”},{“id”:”70″,”name”:”Dan Falk”,”__typename”:”AuthorList”},{“id”:”19918″,”name”:”Dana Najjar”,”__typename”:”AuthorList”},{“id”:”32676″,”name”:”Daniel S. Freed”,”__typename”:”AuthorList”},{“id”:”13724″,”name”:”David H. Freedman”,”__typename”:”AuthorList”},{“id”:”26310″,”name”:”David S. Richeson”,”__typename”:”AuthorList”},{“id”:”30207″,”name”:”David Tse”,”__typename”:”AuthorList”},{“id”:”19266″,”name”:”Devin Powell”,”__typename”:”AuthorList”},{“id”:”13251″,”name”:”Diana Kwon”,”__typename”:”AuthorList”},{“id”:”17000″,”name”:”Elena Renken”,”__typename”:”AuthorList”},{“id”:”17149″,”name”:”Elizabeth Landau”,”__typename”:”AuthorList”},{“id”:”5279″,”name”:”Elizabeth Preston”,”__typename”:”AuthorList”},{“id”:”58″,”name”:”Elizabeth Svoboda”,”__typename”:”AuthorList”},{“id”:”32612″,”name”:”Ellen Horne”,”__typename”:”AuthorList”},{“id”:”25173″,”name”:”Emily Levesque”,”__typename”:”AuthorList”},{“id”:”64″,”name”:”Emily Singer”,”__typename”:”AuthorList”},{“id”:”47″,”name”:”Erica Klarreich”,”__typename”:”AuthorList”},{“id”:”14784″,”name”:”Erika K. Carlson”,”__typename”:”AuthorList”},{“id”:”98″,”name”:”Esther Landhuis”,”__typename”:”AuthorList”},{“id”:”5830″,”name”:”Eva Silverstein”,”__typename”:”AuthorList”},{“id”:”6793″,”name”:”Evelyn Lamb”,”__typename”:”AuthorList”},{“id”:”75″,”name”:”Ferris Jabr”,”__typename”:”AuthorList”},{“id”:”52″,”name”:”Frank Wilczek”,”__typename”:”AuthorList”},{“id”:”69″,”name”:”Gabriel Popkin”,”__typename”:”AuthorList”},{“id”:”77″,”name”:”George Musser”,”__typename”:”AuthorList”},{“id”:”19092″,”name”:”Grant Sanderson”,”__typename”:”AuthorList”},{“id”:”20557″,”name”:”Howard Lee”,”__typename”:”AuthorList”},{“id”:”66″,”name”:”Ingrid Daubechies”,”__typename”:”AuthorList”},{“id”:”85″,”name”:”Ivan Amato”,”__typename”:”AuthorList”},{“id”:”12170″,”name”:”Janna Levin”,”__typename”:”AuthorList”},{“id”:”32″,”name”:”Jeanette Kazmierczak”,”__typename”:”AuthorList”},{“id”:”51″,”name”:”Jennifer Ouellette”,”__typename”:”AuthorList”},{“id”:”72″,”name”:”John Pavlus”,”__typename”:”AuthorList”},{“id”:”16475″,”name”:”John Preskill”,”__typename”:”AuthorList”},{“id”:”91″,”name”:”John Rennie”,”__typename”:”AuthorList”},{“id”:”10351″,”name”:”Jonathan Lambert”,”__typename”:”AuthorList”},{“id”:”31716″,”name”:”Jonathan O’Callaghan”,”__typename”:”AuthorList”},{“id”:”1241″,”name”:”Jordana Cepelewicz”,”__typename”:”AuthorList”},{“id”:”8463″,”name”:”Joshua Roebke”,”__typename”:”AuthorList”},{“id”:”49″,”name”:”Joshua Sokol”,”__typename”:”AuthorList”},{“id”:”16815″,”name”:”jye”,”__typename”:”AuthorList”},{“id”:”67″,”name”:”K.C. Cole”,”__typename”:”AuthorList”},{“id”:”87″,”name”:”Kat McGowan”,”__typename”:”AuthorList”},{“id”:”36139″,”name”:”Katarina Zimmer”,”__typename”:”AuthorList”},{“id”:”20556″,”name”:”Katherine Harmon Courage”,”__typename”:”AuthorList”},{“id”:”90″,”name”:”Katia Moskvitch”,”__typename”:”AuthorList”},{“id”:”27374″,”name”:”Kelsey Houston-Edwards”,”__typename”:”AuthorList”},{“id”:”40″,”name”:”Kevin Hartnett”,”__typename”:”AuthorList”},{“id”:”12570″,”name”:”Laura Poppick”,”__typename”:”AuthorList”},{“id”:”23451″,”name”:”Liam Drew”,”__typename”:”AuthorList”},{“id”:”79″,”name”:”Liz Kruesi”,”__typename”:”AuthorList”},{“id”:”60″,”name”:”Maggie McKee”,”__typename”:”AuthorList”},{“id”:”2333″,”name”:”Mallory Locklear”,”__typename”:”AuthorList”},{“id”:”3569″,”name”:”Marcus Woo”,”__typename”:”AuthorList”},{“id”:”414″,”name”:”Mark H. Kim”,”__typename”:”AuthorList”},{“id”:”17147″,”name”:”Matthew Hutson”,”__typename”:”AuthorList”},{“id”:”30953″,”name”:”Max G. Levy”,”__typename”:”AuthorList”},{“id”:”32437″,”name”:”Max Kozlov”,”__typename”:”AuthorList”},{“id”:”7186″,”name”:”Melinda Wenner Moyer”,”__typename”:”AuthorList”},{“id”:”14093″,”name”:”Michael Harris”,”__typename”:”AuthorList”},{“id”:”23″,”name”:”Michael Moyer”,”__typename”:”AuthorList”},{“id”:”74″,”name”:”Michael Nielsen”,”__typename”:”AuthorList”},{“id”:”19093″,”name”:”Michele Bannister”,”__typename”:”AuthorList”},{“id”:”1472″,”name”:”Moira Chas”,”__typename”:”AuthorList”},{“id”:”6476″,”name”:”Monique Brouillette”,”__typename”:”AuthorList”},{“id”:”35407″,”name”:”Mordechai Rorvig”,”__typename”:”AuthorList”},{“id”:”10″,”name”:”Natalie Wolchover”,”__typename”:”AuthorList”},{“id”:”19962″,”name”:”Nola Taylor Redd”,”__typename”:”AuthorList”},{“id”:”24″,”name”:”Olena Shmahalo”,”__typename”:”AuthorList”},{“id”:”1816″,”name”:”Patrick Honner”,”__typename”:”AuthorList”},{“id”:”84″,”name”:”Peter Byrne”,”__typename”:”AuthorList”},{“id”:”55″,”name”:”Philip Ball”,”__typename”:”AuthorList”},{“id”:”31″,”name”:”Pradeep Mutalik”,”__typename”:”AuthorList”},{“id”:”24011″,”name”:”Puja Changoiwala”,”__typename”:”AuthorList”},{“id”:”100″,”name”:”Quanta Magazine”,”__typename”:”AuthorList”},{“id”:”2784″,”name”:”R. Douglas Fields”,”__typename”:”AuthorList”},{“id”:”26114″,”name”:”Rachel Crowell”,”__typename”:”AuthorList”},{“id”:”9412″,”name”:”Raleigh McElvery”,”__typename”:”AuthorList”},{“id”:”820″,”name”:”Ramin Skibba”,”__typename”:”AuthorList”},{“id”:”1666″,”name”:”Rebecca Boyle”,”__typename”:”AuthorList”},{“id”:”20950″,”name”:”Richard Masland”,”__typename”:”AuthorList”},{“id”:”48″,”name”:”Robbert Dijkgraaf”,”__typename”:”AuthorList”},{“id”:”80″,”name”:”Roberta Kwok”,”__typename”:”AuthorList”},{“id”:”15681″,”name”:”Robin George Andrews”,”__typename”:”AuthorList”},{“id”:”24577″,”name”:”Rodrigo Pérez Ortega”,”__typename”:”AuthorList”},{“id”:”78″,”name”:”Sabine Hossenfelder”,”__typename”:”AuthorList”},{“id”:”83″,”name”:”Sarah Lewin”,”__typename”:”AuthorList”},{“id”:”35441″,”name”:”Scott Aaronson”,”__typename”:”AuthorList”},{“id”:”76″,”name”:”Sean B. Carroll”,”__typename”:”AuthorList”},{“id”:”15680″,”name”:”Sean Carroll”,”__typename”:”AuthorList”},{“id”:”7239″,”name”:”Shannon Hall”,”__typename”:”AuthorList”},{“id”:”65″,”name”:”Siobhan Roberts”,”__typename”:”AuthorList”},{“id”:”5944″,”name”:”Sophia Chen”,”__typename”:”AuthorList”},{“id”:”61″,”name”:”Steph Yin”,”__typename”:”AuthorList”},{“id”:”63″,”name”:”Stephanie Bucklin”,”__typename”:”AuthorList”},{“id”:”26311″,”name”:”Stephanie DeMarco”,”__typename”:”AuthorList”},{“id”:”71″,”name”:”Stephen Ornes”,”__typename”:”AuthorList”},{“id”:”17148″,”name”:”Steve Nadis”,”__typename”:”AuthorList”},{“id”:”13356″,”name”:”Steven Strogatz”,”__typename”:”AuthorList”},{“id”:”17150″,”name”:”Susan D’Agostino”,”__typename”:”AuthorList”},{“id”:”2960″,”name”:”Tara C. Smith”,”__typename”:”AuthorList”},{“id”:”14785″,”name”:”Thomas Lewton”,”__typename”:”AuthorList”},{“id”:”3″,”name”:”Thomas Lin”,”__typename”:”AuthorList”},{“id”:”54″,”name”:”Tim Vernimmen”,”__typename”:”AuthorList”},{“id”:”88″,”name”:”Tom Siegfried”,”__typename”:”AuthorList”},{“id”:”12964″,”name”:”Vanessa Schipani”,”__typename”:”AuthorList”},{“id”:”53″,”name”:”Veronique Greenwood”,”__typename”:”AuthorList”},{“id”:”86″,”name”:”Virginia Hughes”,”__typename”:”AuthorList”},{“id”:”3244″,”name”:”Viviane Callier”,”__typename”:”AuthorList”},{“id”:”89″,”name”:”Wynne Parry”,”__typename”:”AuthorList”},{“id”:”15913″,”name”:”XiaoZhi Lim”,”__typename”:”AuthorList”}],”adBehavior”:”in every single place”,”adUrl”:”https://www.quantamagazine.org/gift-store”,”adAlt”:”Quanta T-shirts at the moment are obtainable on Threadless”,”adImageHome”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2021/03/Store-Advert-Net.gif”,”adImageArticle”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2021/03/Store-Advert-Article-GIF.gif”,”adImageTablet”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2021/03/Store-Advert-Pill.jpg”,”adImageMobile”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2021/03/Store-Advert-Net.gif”,”trackingScripts”:”rn”},”theme”:{“web page”:{“accent”:”#ff8600″,”textual content”:”#1a1a1a”,”background”:”white”},”header”:{“kind”:”default”,”gradient”:{“shade”:”white”},”stable”:{“main”:”#1a1a1a”,”secondary”:”#999999″,”hover”:”#ff8600″},”clear”:{“main”:”white”,”secondary”:”white”,”hover”:”#ff8600″}}},”redirect”:null,”fallbackImage”:{“alt”:””,”caption”:””,”url”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2017/04/default.gif”,”width”:1200,”top”:600,”sizes”:{“thumbnail”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2017/04/default-520×260.gif”,”square_small”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2017/04/default-160×160.gif”,”square_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2017/04/default-520×520.gif”,”medium”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2017/04/default.gif”,”medium_large”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2017/04/default-768×384.gif”,”giant”:”https://d2r55xnwy6nx47.cloudfront.web/uploads/2017/04/default.gif”,”__typename”:”ImageSizes”},”__typename”:”Picture”}},”modals”:{“loginModal”:false,”signUpModal”:false,”forgotPasswordModal”:false,”resetPasswordModal”:false,”lightboxModal”:false,”callback”:null,”props”:null},”podcast”:{“id”:null,”taking part in”:false,”length”:0,”currentTime”:0},”consumer”:{“loggedIn”:false,”savedArticleIDs”:[],”userEmail”:””,”editor”:false},”feedback”:{“open”:false},”cookies”:{“acceptedCookie”:false}},
env: {
APP_URL: ‘https://www.quantamagazine.org’,
NODE_ENV: ‘manufacturing’,
WP_URL: ‘https://api.quantamagazine.org’,
HAS_GOOGLE_ID: true,
HAS_FACEBOOK_ID: true,
},
}



Source link