- 1.
Elham, A., Masoumeh, G. & Saeed, S. Electrochemical sensing based mostly on carbon nanoparticles: A evaluation. Sens. Actuators B Chem. 293, 183–209 (2019).
- 2.
Bottari, G., Ángeles, H. M. & Wibmer, L. Chemical functionalization and characterization of graphene-based supplies. Chem. Soc. Rev. 46, 4464–4500 (2017).
- 3.
Yu, W., Sisi, L., Haiyan, Y. & Jie, L. Progress within the useful modification of graphene/graphene oxide: A evaluation. RSC Adv. 10, 15328–15345 (2020).
- 4.
Jose, J. et al. Photophysical and electrochemical research of anchored chromium (III) complicated on decreased graphene oxide by way of diazonium chemistry. Appl. Organomet. Chem. 33, e5063 (2019).
- 5.
Yadav, R. & Dixit, C. Ok. Synthesis, characterization and potential functions of nitrogen-doped graphene: A brief evaluation. J. Sci. Adv. Mater. Units 2, 141–149 (2017).
- 6.
Jose, J. et al. Rising ternary nanocomposite of rGO draped palladium oxide/polypyrrole for prime efficiency supercapacitors. J. Alloys Compd. 855, 157481 (2021).
- 7.
Geng, D. et al. Nitrogen doping results on the construction of graphene. Appl. Surf. Sci. 257, 9193–9198 (2011).
- 8.
Gong, Ok., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with excessive electrocatalytic exercise for oxygen discount. Science 323, 760–764 (2009).
- 9.
Cai, Z. et al. Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Anal. Chem. 87, 11803–11811 (2015).
- 10.
Jose, J., Jose, S. P., Abinaya, S., Shaji, S. & Sreeja, P. B. Benzoyl hydrazine anchored graphene oxide as supercapacitor electrodes. Mat. Chem. Phys. 256, 123666 (2020).
- 11.
Santanu, S., Elena, B. & Haddon, R. C. Covalent chemistry in graphene electronics. Mater. At this time 15, 276–285 (2012).
- 12.
Kemp, Ok. C., Georgakilas, V., Otyepka, M., Bourlinos, A. B. & Chandra, V. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and functions. Chem. Rev. 112, 6156–6214 (2012).
- 13.
Mejia, E. G. & Ramirez-Mares, M. V. Influence of caffeine and occasional on our well being. Traits Endocrin. Met. 25, 489–492 (2014).
- 14.
Juliana, D. & Farah, A. Caffeine consumption via espresso: Content material within the beverage, metabolism, well being advantages and dangers. Drinks 5, 37 (2019).
- 15.
Durrant, Ok. L. Identified and hidden sources of caffeine in drug, meals, and pure merchandise. J. Am. Pharm. Assoc. 42, 625–637 (2002).
- 16.
Robin, P. et al. Espresso consumption and well being: Umbrella evaluation of meta-analyses of a number of well being outcomes. BMJ 359, j5024 (2017).
- 17.
Heaney, R. P. Results of caffeine on bone and the calcium financial system. Meals Chem. Toxicol. 40, 1263–1270 (2002).
- 18.
Poiger, I. J. B. T., Müller, M. D. & Buser, H. R. Caffeine, an anthropogenic marker for wastewater contamination of floor waters. Environ. Sci. Technol. 37, 691–700 (2003).
- 19.
Senta, I., Lor, E. G., Borsotti, A., Zuccato, E. & Castiglioni, S. Wastewater evaluation to watch use of caffeine and nicotine and analysis of their metabolites as biomarkers for inhabitants dimension evaluation. Water Res. 74, 23–33 (2015).
- 20.
Brodin, T. et al. Ecological results of prescribed drugs in aquatic systems-impacts via behavioural alterations. Philos. Trans. R Soc. Lond. B Biol. Sci. 369, 20130580 (2014).
- 21.
Eisele, A. P. P., Valezia, C. F. & Sartori, E. R. Exploiting the excessive oxidation potential of carisoprodol on a boron-doped diamond electrode: An improved methodology for its simultaneous dedication with acetaminophen and caffeine. Analyst 142, 3514–3521 (2017).
- 22.
Reskety, A. A., Chamjangali, M. A., Boujnane, M. & Brajter-Tot, A. Excessive sensitivity and quick oxidation of caffeine in espresso and theophylline at nanostructured electrodes. Electroanalysis 28, 1–9 (2016).
- 23.
Oren, T. & Anık, U. Voltammetric dedication of caffeine by utilizing gold nanoparticle-glassy carbon paste composite electrode. Measurement 106, 26–30 (2017).
- 24.
Svorc, L. Willpower of caffeine: A complete evaluation on electrochemical strategies. Int. J. Electrochem. Sci. 8, 5755–5773 (2013).
- 25.
Ramachandran, R. et al. A evaluation of the superior developments of electrochemical sensors for the detection of poisonous and bioactive molecules. Inorg. Chem. Entrance. 6, 3418–3439 (2019).
- 26.
Kalita, G. & Tanemura, M. Fundamentals of chemical vapor deposited graphene and rising functions. In Graphene Supplies-Superior Functions (eds George, Ok. & Athanasios, M.) 30–35 (IntechOpen, 2017).
- 27.
Wang, Y., Wei, X., Wang, F. & Li, M. Delicate voltammetric detection of caffeine in tea and different drinks based mostly on a DNA functionalized single-walled carbon nanotube modified glassy carbon electrode. Anal. Strategies 6, 7525–7531 (2014).
- 28.
Tajeu, Ok. Y., Ymele, E., Jiokeng, S. L. Z. & Tonle, I. Ok. Electrochemical sensor for caffeine based mostly on a glassy carbon electrode modified with an Attapulgite/nafion Movie. Electroanalysis 31, 350–356 (2018).
- 29.
Trani, A., Petrucci, R., Marrosu, G., Zane, D. & Curulli, A. Selective electrochemical dedication of caffeine at a gold chitosan nanocomposite sensor: Could little change on nanocomposites synthesis have an effect on selectivity. J. Electroanal. Chem. 788, 99–106 (2017).
- 30.
Silva, T., Zanin, H., Corat, E. J. & Fatibello-Filho, O. Simultaneous voltammetric dedication of paracetamol, codeine and caffeine on diamond-like carbon porous electrodes. Electroanalysis 29, 907–916 (2017).
- 31.
Shehata, M., Azabb, S. M. & Fekry, A. M. Could glutathione and graphene oxide improve the electrochemical detection of caffeine on carbon paste sensor in aqueous and surfactant media for drinks evaluation?. Synth. Met. 256, 116122 (2019).
- 32.
Zhang, Y. et al. Phenolic hydroxyl functionalized partially decreased graphene oxides for symmetric supercapacitors with considerably enhanced electrochemical efficiency. J. Energy Sources 415, 226779 (2019).
- 33.
Precht, R. et al. Investigation of sodium insertion into tetracyanoquinodimethane (TCNQ): Outcomes for a TCNQ skinny movie obtained by a floor science strategy. Phys. Chem. Chem. Phys. 4, 3056–3064 (2016).
- 34.
Savintsev, A. P., Yu, O. G., Kalazhokov, Z. Ok. & Kalazhokov, Ok. Ok. X-ray photoelectron spectroscopy research of the sodium chloride floor after laser publicity. J. Phys. Conf. Ser. 774, 012118 (2016).
- 35.
Jhonsi, M. A., Nithya, C. & Kathiravan, A. Probing electron switch dynamics of pyranine with decreased graphene oxide. Phys. Chem. Chem. Phys. 16, 20878–20886 (2014).
- 36.
Shanshan, W., Yang, L., Xiaobin, F., Fengbao, Z. & Guoliang, Z. β-Cyclodextrin functionalized graphene oxide: An environment friendly and recyclable adsorbent for the removing of dye pollution. Entrance. Chem. Sci. Eng. 9, 77–83 (2015).
- 37.
Kumari, S., Shekhar, A. & Pathak, D. D. Synthesis and characterization of a Cu(II) Schiff base complicated immobilized on graphene oxide and its catalytic utility within the inexperienced synthesis of propargylamines. RSC Adv. 6, 15340–15344 (2016).
- 38.
Mungse, H. P., Verma, S., Kumar, N., Sain, B. & Khatri, O. P. Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic exercise for the oxidation of alcohols. J. Mater. Chem. 22, 5427–5433 (2012).
- 39.
Chakraborty, S. et al. Excessive yield synthesis of amine functionalized graphene oxide and its floor properties. RSC Adv. 6, 67916–67924 (2016).
- 40.
Jia, Y. A. N. et al. Functionalized graphene oxide with ethylenediamine and 1,6-hexane diamine. New Carbon Mater. 27, 370–376 (2012).
- 41.
Anil, Ok. & Mahima, Ok. Amino acid mediated functionalization andreduction of graphene oxide-synthesis and the formation mechanism of nitrogen-doped graphene. New. J. Chem. 38, 3457–3467 (2014).
- 42.
Yake, Z. et al. Nitrogen-doped graphene as a cathode materials for dye-sensitized photo voltaic cells: Results of hydrothermal response and annealing on electrocatalytic efficiency. RSC Adv. 5, 10430–10439 (2015).
- 43.
Jiao, Z. et al. 3D free-standing nitrogen-doped decreased graphene oxide aerogel as anode materials for sodium ion batteries with enhanced sodium storage. Sci. Rep. 7, 4886 (2017).
- 44.
Allen J. B., Larry, R., Faulkner, Electrochemical Strategies: Fundamentals and Functions, John Wiley & Sons Inc. 2nd Edn., 261–304 (2000)
- 45.
Choi, S., Kim, C., Suh, J. M. & Jang, H. W. Diminished graphene oxide-based supplies for electrochemical vitality conversion reactions. Carbon Vitality 1, 85–108 (2019).
- 46.
Arroyo-Gomez, J. J., Villarroel-Rocha, D., de Freitas-Araújo, Ok. C., Martínez-Huitle, C. A. & Sapag, Ok. Applicability of activated carbon obtained from peach stone as an electrochemical sensor for detecting caffeine. J. Electroanal. Chem. 822, 171–176 (2018).
- 47.
Tavagnacco, L. et al. Molecular dynamics simulation research of caffeine aggregation in aqueous resolution. J. Phys. Chem. B 115, 10957–10966 (2011).
- 48.
Hezarkhani, M. & Ghadari, R. Exploration of the binding properties of the azo dye pollution with nitrogen-doped graphene oxide by computational modeling for wastewater therapy enchancment. Chem. Choose 4, 5968–5978 (2019).
- 49.
Wang, Y. et al. An electrochemical sensor for dedication of tryptophan within the presence of DA based mostly on poly(l-methionine)/graphene modified electrode. RSC Adv. 6, 10662–10669 (2016).
- 50.
Wang, Y., Dinga, Y., Lia, L. & Huc, P. Nitrogen-doped carbon nanotubes adorned poly (l-cysteine) as a novel, ultrasensitive electrochemical sensor for simultaneous dedication of theophylline and caffeine. Talanta 178, 449–457 (2018).
- 51.
Pelossof, G., Tel-Vered, R., Shimrona, S. & Willne, I. Controlling interfacial electron switch and electrocatalysis by pH or ion-switchable DNA monolayer-modified electrodes. Chem. Sci. 4, 1137–1144 (2013).
- 52.
Spataru, N., Sarada, B. V., Tryk, D. A. & Fujishima, A. Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical utility. Electroanalysis 14, 721–728 (2002).
- 53.
Silva, A. R. L. et al. Understanding the habits of caffeine on a boron-doped diamond floor: Voltammetric, DFT, QTAIM and ELF research. New J. Chem. 41, 7766–7774 (2017).
- 54.
Aklilu, M., Tessema, M. & Redi-Abshiro, M. Oblique voltammetric dedication of caffeine content material in espresso utilizing 1,4-benzoquinone modified carbon paste electrode. Talanta 76, 742–746 (2008).
- 55.
Ly, S. Y., Jung, Y., Lee, J. & Kwak, Ok. Simultaneous diagnostic assay of catechol and caffeine utilizing an in vivo ımplanted neuro sensor. Bull. Kor. Chem. Soc. 29, 1742–1746 (2008).
- 56.
Ly, S. Y., Lee, C. H. & Jung, Y. S. Voltammetric bioassay of caffeine utilizing sensor implant. Neuromol. Med. 11, 20–27 (2009).
- 57.
Alizadeh, T., Ganjali, M. R., Zare, M. & Norouzi, P. Improvement of a voltammetric sensor based mostly on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochim. Acta 55, 1568–1574 (2010).
- 58.
Jun-Yong, S., Ke-Jing, H., Shuai-Yun, W. & Zhi-Wei, W. Utility of cetyltrimethylammonium bromide–graphene modified electrode for delicate dedication of caffeine. Can. J. Chem. 89, 697–702 (2011).
- 59.
Habibi, B., Abazari, M. & Pournaghi-Azar, M. H. A carbon nanotube modified electrode for dedication of caffeine by differential pulse voltammetry. Chin. J. Cat. 33, 1783–1790 (2012).
- 60.
Xiao-Qin, X., Ke-Jing, H. & Chun-Xuan, X. Glassy carbon electrode modified with poly(taurine)/TiO2-graphene composite movie for dedication of acetaminophen and caffeine. Chem. Ind. Chem. Eng. 19, 359–368 (2013).
- 61.
Jiang, L., Ding, Y., Jiang, F., Li, L. & Mo, F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and delicate voltammetric dedication of caffeine and vanillin. Anal. Chim. Acta 833, 22–28 (2014).
- 62.
Filik, H., Avan, A. A. & Mümin, Y. Simultaneous electrochemical dedication of caffeine and vanillin by utilizing poly(Alizarin Purple S) modified glassy carbon electrode. Meals Anal. Strategies 10, 31–40 (2017).
- 63.
Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).