An electrochemical sensor for nanomolar detection of caffeine based on nicotinic acid hydrazide anchored on graphene oxide (NAHGO)

  • 1.

    Elham, A., Masoumeh, G. & Saeed, S. Electrochemical sensing based mostly on carbon nanoparticles: A evaluation. Sens. Actuators B Chem. 293, 183–209 (2019).

    Article CAS Google Scholar

  • 2.

    Bottari, G., Ángeles, H. M. & Wibmer, L. Chemical functionalization and characterization of graphene-based supplies. Chem. Soc. Rev. 46, 4464–4500 (2017).

    CAS PubMed Article PubMed Central Google Scholar

  • 3.

    Yu, W., Sisi, L., Haiyan, Y. & Jie, L. Progress within the useful modification of graphene/graphene oxide: A evaluation. RSC Adv. 10, 15328–15345 (2020).

    ADS CAS Article Google Scholar

  • 4.

    Jose, J. et al. Photophysical and electrochemical research of anchored chromium (III) complicated on decreased graphene oxide by way of diazonium chemistry. Appl. Organomet. Chem. 33, e5063 (2019).

    Google Scholar

  • 5.

    Yadav, R. & Dixit, C. Ok. Synthesis, characterization and potential functions of nitrogen-doped graphene: A brief evaluation. J. Sci. Adv. Mater. Units 2, 141–149 (2017).

    Article Google Scholar

  • 6.

    Jose, J. et al. Rising ternary nanocomposite of rGO draped palladium oxide/polypyrrole for prime efficiency supercapacitors. J. Alloys Compd. 855, 157481 (2021).

    CAS Article Google Scholar

  • 7.

    Geng, D. et al. Nitrogen doping results on the construction of graphene. Appl. Surf. Sci. 257, 9193–9198 (2011).

    ADS CAS Article Google Scholar

  • 8.

    Gong, Ok., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with excessive electrocatalytic exercise for oxygen discount. Science 323, 760–764 (2009).

    ADS CAS Article Google Scholar

  • 9.

    Cai, Z. et al. Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Anal. Chem. 87, 11803–11811 (2015).

    CAS PubMed Article PubMed Central Google Scholar

  • 10.

    Jose, J., Jose, S. P., Abinaya, S., Shaji, S. & Sreeja, P. B. Benzoyl hydrazine anchored graphene oxide as supercapacitor electrodes. Mat. Chem. Phys. 256, 123666 (2020).

    CAS Article Google Scholar

  • 11.

    Santanu, S., Elena, B. & Haddon, R. C. Covalent chemistry in graphene electronics. Mater. At this time 15, 276–285 (2012).

    Article CAS Google Scholar

  • 12.

    Kemp, Ok. C., Georgakilas, V., Otyepka, M., Bourlinos, A. B. & Chandra, V. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and functions. Chem. Rev. 112, 6156–6214 (2012).

    PubMed Article CAS PubMed Central Google Scholar

  • 13.

    Mejia, E. G. & Ramirez-Mares, M. V. Influence of caffeine and occasional on our well being. Traits Endocrin. Met. 25, 489–492 (2014).

    CAS Article Google Scholar

  • 14.

    Juliana, D. & Farah, A. Caffeine consumption via espresso: Content material within the beverage, metabolism, well being advantages and dangers. Drinks 5, 37 (2019).

    Article CAS Google Scholar

  • 15.

    Durrant, Ok. L. Identified and hidden sources of caffeine in drug, meals, and pure merchandise. J. Am. Pharm. Assoc. 42, 625–637 (2002).

    Google Scholar

  • 16.

    Robin, P. et al. Espresso consumption and well being: Umbrella evaluation of meta-analyses of a number of well being outcomes. BMJ 359, j5024 (2017).

    Google Scholar

  • 17.

    Heaney, R. P. Results of caffeine on bone and the calcium financial system. Meals Chem. Toxicol. 40, 1263–1270 (2002).

    CAS PubMed Article PubMed Central Google Scholar

  • 18.

    Poiger, I. J. B. T., Müller, M. D. & Buser, H. R. Caffeine, an anthropogenic marker for wastewater contamination of floor waters. Environ. Sci. Technol. 37, 691–700 (2003).

    ADS PubMed Article CAS PubMed Central Google Scholar

  • 19.

    Senta, I., Lor, E. G., Borsotti, A., Zuccato, E. & Castiglioni, S. Wastewater evaluation to watch use of caffeine and nicotine and analysis of their metabolites as biomarkers for inhabitants dimension evaluation. Water Res. 74, 23–33 (2015).

    CAS PubMed Article PubMed Central Google Scholar

  • 20.

    Brodin, T. et al. Ecological results of prescribed drugs in aquatic systems-impacts via behavioural alterations. Philos. Trans. R Soc. Lond. B Biol. Sci. 369, 20130580 (2014).

    PubMed PubMed Central Article CAS Google Scholar

  • 21.

    Eisele, A. P. P., Valezia, C. F. & Sartori, E. R. Exploiting the excessive oxidation potential of carisoprodol on a boron-doped diamond electrode: An improved methodology for its simultaneous dedication with acetaminophen and caffeine. Analyst 142, 3514–3521 (2017).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • 22.

    Reskety, A. A., Chamjangali, M. A., Boujnane, M. & Brajter-Tot, A. Excessive sensitivity and quick oxidation of caffeine in espresso and theophylline at nanostructured electrodes. Electroanalysis 28, 1–9 (2016).

    Article CAS Google Scholar

  • 23.

    Oren, T. & Anık, U. Voltammetric dedication of caffeine by utilizing gold nanoparticle-glassy carbon paste composite electrode. Measurement 106, 26–30 (2017).

    ADS Article Google Scholar

  • 24.

    Svorc, L. Willpower of caffeine: A complete evaluation on electrochemical strategies. Int. J. Electrochem. Sci. 8, 5755–5773 (2013).

    CAS Google Scholar

  • 25.

    Ramachandran, R. et al. A evaluation of the superior developments of electrochemical sensors for the detection of poisonous and bioactive molecules. Inorg. Chem. Entrance. 6, 3418–3439 (2019).

    CAS Article Google Scholar

  • 26.

    Kalita, G. & Tanemura, M. Fundamentals of chemical vapor deposited graphene and rising functions. In Graphene Supplies-Superior Functions (eds George, Ok. & Athanasios, M.) 30–35 (IntechOpen, 2017).

    Google Scholar

  • 27.

    Wang, Y., Wei, X., Wang, F. & Li, M. Delicate voltammetric detection of caffeine in tea and different drinks based mostly on a DNA functionalized single-walled carbon nanotube modified glassy carbon electrode. Anal. Strategies 6, 7525–7531 (2014).

    CAS Article Google Scholar

  • 28.

    Tajeu, Ok. Y., Ymele, E., Jiokeng, S. L. Z. & Tonle, I. Ok. Electrochemical sensor for caffeine based mostly on a glassy carbon electrode modified with an Attapulgite/nafion Movie. Electroanalysis 31, 350–356 (2018).

    Google Scholar

  • 29.

    Trani, A., Petrucci, R., Marrosu, G., Zane, D. & Curulli, A. Selective electrochemical dedication of caffeine at a gold chitosan nanocomposite sensor: Could little change on nanocomposites synthesis have an effect on selectivity. J. Electroanal. Chem. 788, 99–106 (2017).

    CAS Article Google Scholar

  • 30.

    Silva, T., Zanin, H., Corat, E. J. & Fatibello-Filho, O. Simultaneous voltammetric dedication of paracetamol, codeine and caffeine on diamond-like carbon porous electrodes. Electroanalysis 29, 907–916 (2017).

    CAS Article Google Scholar

  • 31.

    Shehata, M., Azabb, S. M. & Fekry, A. M. Could glutathione and graphene oxide improve the electrochemical detection of caffeine on carbon paste sensor in aqueous and surfactant media for drinks evaluation?. Synth. Met. 256, 116122 (2019).

    CAS Article Google Scholar

  • 32.

    Zhang, Y. et al. Phenolic hydroxyl functionalized partially decreased graphene oxides for symmetric supercapacitors with considerably enhanced electrochemical efficiency. J. Energy Sources 415, 226779 (2019).

    Google Scholar

  • 33.

    Precht, R. et al. Investigation of sodium insertion into tetracyanoquinodimethane (TCNQ): Outcomes for a TCNQ skinny movie obtained by a floor science strategy. Phys. Chem. Chem. Phys. 4, 3056–3064 (2016).

    Article Google Scholar

  • 34.

    Savintsev, A. P., Yu, O. G., Kalazhokov, Z. Ok. & Kalazhokov, Ok. Ok. X-ray photoelectron spectroscopy research of the sodium chloride floor after laser publicity. J. Phys. Conf. Ser. 774, 012118 (2016).

    Article CAS Google Scholar

  • 35.

    Jhonsi, M. A., Nithya, C. & Kathiravan, A. Probing electron switch dynamics of pyranine with decreased graphene oxide. Phys. Chem. Chem. Phys. 16, 20878–20886 (2014).

    Article Google Scholar

  • 36.

    Shanshan, W., Yang, L., Xiaobin, F., Fengbao, Z. & Guoliang, Z. β-Cyclodextrin functionalized graphene oxide: An environment friendly and recyclable adsorbent for the removing of dye pollution. Entrance. Chem. Sci. Eng. 9, 77–83 (2015).

    Article CAS Google Scholar

  • 37.

    Kumari, S., Shekhar, A. & Pathak, D. D. Synthesis and characterization of a Cu(II) Schiff base complicated immobilized on graphene oxide and its catalytic utility within the inexperienced synthesis of propargylamines. RSC Adv. 6, 15340–15344 (2016).

    ADS CAS Article Google Scholar

  • 38.

    Mungse, H. P., Verma, S., Kumar, N., Sain, B. & Khatri, O. P. Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic exercise for the oxidation of alcohols. J. Mater. Chem. 22, 5427–5433 (2012).

    CAS Article Google Scholar

  • 39.

    Chakraborty, S. et al. Excessive yield synthesis of amine functionalized graphene oxide and its floor properties. RSC Adv. 6, 67916–67924 (2016).

    ADS CAS Article Google Scholar

  • 40.

    Jia, Y. A. N. et al. Functionalized graphene oxide with ethylenediamine and 1,6-hexane diamine. New Carbon Mater. 27, 370–376 (2012).

    Article CAS Google Scholar

  • 41.

    Anil, Ok. & Mahima, Ok. Amino acid mediated functionalization andreduction of graphene oxide-synthesis and the formation mechanism of nitrogen-doped graphene. New. J. Chem. 38, 3457–3467 (2014).

    Article Google Scholar

  • 42.

    Yake, Z. et al. Nitrogen-doped graphene as a cathode materials for dye-sensitized photo voltaic cells: Results of hydrothermal response and annealing on electrocatalytic efficiency. RSC Adv. 5, 10430–10439 (2015).

    Article CAS Google Scholar

  • 43.

    Jiao, Z. et al. 3D free-standing nitrogen-doped decreased graphene oxide aerogel as anode materials for sodium ion batteries with enhanced sodium storage. Sci. Rep. 7, 4886 (2017).

    Article CAS Google Scholar

  • 44.

    Allen J. B., Larry, R., Faulkner, Electrochemical Strategies: Fundamentals and Functions, John Wiley & Sons Inc. 2nd Edn., 261–304 (2000)

  • 45.

    Choi, S., Kim, C., Suh, J. M. & Jang, H. W. Diminished graphene oxide-based supplies for electrochemical vitality conversion reactions. Carbon Vitality 1, 85–108 (2019).

    CAS Article Google Scholar

  • 46.

    Arroyo-Gomez, J. J., Villarroel-Rocha, D., de Freitas-Araújo, Ok. C., Martínez-Huitle, C. A. & Sapag, Ok. Applicability of activated carbon obtained from peach stone as an electrochemical sensor for detecting caffeine. J. Electroanal. Chem. 822, 171–176 (2018).

    CAS Article Google Scholar

  • 47.

    Tavagnacco, L. et al. Molecular dynamics simulation research of caffeine aggregation in aqueous resolution. J. Phys. Chem. B 115, 10957–10966 (2011).

    CAS PubMed PubMed Central Article Google Scholar

  • 48.

    Hezarkhani, M. & Ghadari, R. Exploration of the binding properties of the azo dye pollution with nitrogen-doped graphene oxide by computational modeling for wastewater therapy enchancment. Chem. Choose 4, 5968–5978 (2019).

    CAS Google Scholar

  • 49.

    Wang, Y. et al. An electrochemical sensor for dedication of tryptophan within the presence of DA based mostly on poly(l-methionine)/graphene modified electrode. RSC Adv. 6, 10662–10669 (2016).

    ADS CAS Article Google Scholar

  • 50.

    Wang, Y., Dinga, Y., Lia, L. & Huc, P. Nitrogen-doped carbon nanotubes adorned poly (l-cysteine) as a novel, ultrasensitive electrochemical sensor for simultaneous dedication of theophylline and caffeine. Talanta 178, 449–457 (2018).

    CAS PubMed Article PubMed Central Google Scholar

  • 51.

    Pelossof, G., Tel-Vered, R., Shimrona, S. & Willne, I. Controlling interfacial electron switch and electrocatalysis by pH or ion-switchable DNA monolayer-modified electrodes. Chem. Sci. 4, 1137–1144 (2013).

    CAS Article Google Scholar

  • 52.

    Spataru, N., Sarada, B. V., Tryk, D. A. & Fujishima, A. Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical utility. Electroanalysis 14, 721–728 (2002).

    CAS Article Google Scholar

  • 53.

    Silva, A. R. L. et al. Understanding the habits of caffeine on a boron-doped diamond floor: Voltammetric, DFT, QTAIM and ELF research. New J. Chem. 41, 7766–7774 (2017).

    Article Google Scholar

  • 54.

    Aklilu, M., Tessema, M. & Redi-Abshiro, M. Oblique voltammetric dedication of caffeine content material in espresso utilizing 1,4-benzoquinone modified carbon paste electrode. Talanta 76, 742–746 (2008).

    CAS PubMed Article PubMed Central Google Scholar

  • 55.

    Ly, S. Y., Jung, Y., Lee, J. & Kwak, Ok. Simultaneous diagnostic assay of catechol and caffeine utilizing an in vivo ımplanted neuro sensor. Bull. Kor. Chem. Soc. 29, 1742–1746 (2008).

    CAS Article Google Scholar

  • 56.

    Ly, S. Y., Lee, C. H. & Jung, Y. S. Voltammetric bioassay of caffeine utilizing sensor implant. Neuromol. Med. 11, 20–27 (2009).

    CAS Article Google Scholar

  • 57.

    Alizadeh, T., Ganjali, M. R., Zare, M. & Norouzi, P. Improvement of a voltammetric sensor based mostly on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochim. Acta 55, 1568–1574 (2010).

    CAS Article Google Scholar

  • 58.

    Jun-Yong, S., Ke-Jing, H., Shuai-Yun, W. & Zhi-Wei, W. Utility of cetyltrimethylammonium bromide–graphene modified electrode for delicate dedication of caffeine. Can. J. Chem. 89, 697–702 (2011).

    Article Google Scholar

  • 59.

    Habibi, B., Abazari, M. & Pournaghi-Azar, M. H. A carbon nanotube modified electrode for dedication of caffeine by differential pulse voltammetry. Chin. J. Cat. 33, 1783–1790 (2012).

    CAS Article Google Scholar

  • 60.

    Xiao-Qin, X., Ke-Jing, H. & Chun-Xuan, X. Glassy carbon electrode modified with poly(taurine)/TiO2-graphene composite movie for dedication of acetaminophen and caffeine. Chem. Ind. Chem. Eng. 19, 359–368 (2013).

    Article CAS Google Scholar

  • 61.

    Jiang, L., Ding, Y., Jiang, F., Li, L. & Mo, F. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and delicate voltammetric dedication of caffeine and vanillin. Anal. Chim. Acta 833, 22–28 (2014).

    CAS PubMed Article PubMed Central Google Scholar

  • 62.

    Filik, H., Avan, A. A. & Mümin, Y. Simultaneous electrochemical dedication of caffeine and vanillin by utilizing poly(Alizarin Purple S) modified glassy carbon electrode. Meals Anal. Strategies 10, 31–40 (2017).

    Article Google Scholar

  • 63.

    Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS Article Google Scholar

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *