GRAPHENE

Gram-scale bottom-up flash graphene synthesis

  • 1.

    Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: a evaluation of graphene. Chem. Rev. 110, 132–145 (2010).

    CAS  Article  Google Scholar 

  • 2.

    Yi, M. & Shen, Z. A evaluation on mechanical exfoliation for the scalable manufacturing of graphene. J. Mater. Chem. A 3, 11700–11715 (2015).

    CAS  Article  Google Scholar 

  • 3.

    Hernandez, Y. et al. Excessive-yield manufacturing of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Eda, G., Fanchini, G. & Chhowalla, M. Giant-area ultrathin movies of diminished graphene oxide as a clear and versatile digital materials. Nat. Nanotechnol. 3, 270–274 (2008).

    CAS  Article  Google Scholar 

  • 5.

    Li, D. et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Lin, L., Peng, H. & Liu, Z. Synthesis challenges for graphene trade. Nat. Mater. 18, 520–524 (2019).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Ferrari, A. C. Raman spectroscopy of graphene and graphite: dysfunction, electron–phonon coupling, doping and nonadiabatic results. Strong State Commun. 143, 47–57 (2007).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Ni, Z. H. et al. Probing charged impurities in suspended graphene utilizing Raman spectroscopy. ACS Nano 3, 569–574 (2009).

    CAS  Article  Google Scholar 

  • 11.

    Garlow, J. A. et al. Giant-area progress of turbostratic graphene on Ni (111) by way of bodily vapor deposition. Sci. Rep. 6, 19804 (2016).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Niilisk, A. et al. Raman characterization of stacking in multi-layer graphene grown on Ni. Carbon 98, 658–665 (2016).

    CAS  Article  Google Scholar 

  • 13.

    Li, Z. Q. et al. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007).

    CAS  Article  Google Scholar 

  • 14.

    Franklin, R. E. Crystallite progress in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. 209, 196–218 (1951).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Stankovich, S. et al. Synthesis of graphene-based nanosheets by way of chemical discount of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    CAS  Article  Google Scholar 

  • 16.

    Cai, M., Thorpe, D., Adamson, D. H. & Schniepp, H. C. Strategies of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012).

    CAS  Article  Google Scholar 

  • 17.

    Miandad, R. et al. Catalytic pyrolysis of plastic waste: shifting towards pyrolysis primarily based biorefineries. Entrance. Vitality Res. 7, 27 (2019).

    Article  Google Scholar 

  • 18.

    Gibb, B. C. Plastics are endlessly. Nat. Chem. 11, 394–395 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Parfitt, J., Barthel, M. & Macnaughton, S. Meals waste inside meals provide chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B 365, 3065–3081 (2010).

    Article  Google Scholar 

  • 20.

    Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. World Meals Losses and Meals Waste: Extent, Causes and Prevention (FAO, 2011); http://www.fao.org/3/a-i2697e.pdf.

  • 21.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Advincula, P. A. et al. Accommodating quantity change and imparting thermal conductivity by encapsulation of section change supplies in carbon nanoparticles. J. Mater. Chem. A 6, 2461–2467 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Chakrabarti, A. et al. Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21, 9491–9493 (2011).

    CAS  Article  Google Scholar 

  • 25.

    Lin, J. et al. Laser-induced porous graphene movies from industrial polymers. Nat. Commun. 5, 5714 (2014).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Nepal, A., Singh, G. P., Flanders, B. N. & Sorensen, C. M. One-step synthesis of graphene by way of catalyst-free gas-phase hydrocarbon detonation. Nanotechnology 24, 245602 (2013).

    ADS  Article  Google Scholar 

  • 27.

    Huang, J. Y. et al. Actual-time remark of tubule formation from amorphous carbon nanowires underneath high-bias Joule heating. Nano Lett. 6, 1699–1705 (2006).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Harris, P. J. F. Engineering carbon supplies with electrical energy. Carbon 122, 504–513 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Luong, D. X. et al. Laser-induced graphene fibers. Carbon 126 472–479 (2017).

    Google Scholar 

  • 30.

    Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential vitality expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Xu, Y. et al. Liquid-phase exfoliation of graphene: an outline on exfoliation media, methods, and challenges. Nanomaterials 8, 942 (2018).

    Article  Google Scholar 

  • 34.

    O’Neill, A., Khan, U., Nirmalraj, P. N., Boland, J. & Coleman, J. N. Graphene dispersion and exfoliation in low boiling level solvents. J. Phys. Chem. C 115, 5422–5428 (2011).

    Article  Google Scholar 

  • 35.

    Dong, L. et al. A non-dispersion technique for large-scale manufacturing of ultra-high focus graphene slurries in water. Nat. Commun. 9, 76 (2018).

    ADS  Article  Google Scholar 

  • 36.

    Liu, J., Li, Q. & Xu, S. Reinforcing mechanism of graphene and graphene oxide sheets on cement-based supplies. J. Mater. Civ. Eng. 31, 04019014 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Krystek, M. et al. Excessive-performance graphene-based cementitious composites. Adv. Sci. 6, 1801195 (2019).

    Article  Google Scholar 

  • Source