GRAPHENE

High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene


  • 1.

    Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Liang, Y., Gopalakrishnan, Ok., Griffin, P. B. & Plummer, J. D. From DRAM to SRAM with a novel sige-based unfavourable differential resistance (NDR) system. In IEEE InternationalElectron Units Assembly, 2005. IEDM Technical Digest., 959–962 (2005).

  • 3.

    Berg, J., Bengtsson, S. & Lundgren, P. Can molecular resonant tunneling diodes be used for native refresh of DRAM reminiscence cells? Sol. -St. Elec. 44, 2247–2252 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    van Bentum, P. J. M., People who smoke, R. T. M. & van Kempen, H. Incremental Charging of Single Small Particles. Phys. Rev. Lett. 60, 2543–2546 (1988).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    Meirav, U., Kastner, M. A. & Wind, S. J. Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65, 771–774 (1990).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 6.

    Ford, C. J. B. Low and Excessive Discipline Quenching of the Corridor Impact and Coulomb Blockade in Ballistic Junctions. Phys. Scr. T39, 288–294 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P. & Reifenberger, R. Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B 52, 9071–9077 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions past digital transport. Nat. Nanotech. 8, 399–410 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Bouvron, S. et al. Cost transport in a single molecule transistor probed by scanning tunneling microscopy. Nanoscale 10, 1487–1493 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-Scale Electronics: from Idea to Perform. Chem. Rev. 116, 4318–4440 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Vilan, A., Aswal, D. & Cahen, D. Giant-Space, Ensemble Molecular Electronics: motivation and challenges. Chem. Rev. 117, 4248–4286 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Puebla-Hellmann, G., Venkatesan, Ok., Mayor, M. & Lörtscher, E. Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer gadgets. Nature 559, 232–235 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Klein, D. L., McEuen, P. L., Katari, J. E. B., Roth, R. & Alivisatos, A. P. An strategy to electrical research of single nanocrystals. Appl. Phys. Lett. 68, 2574–2576 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Solar, L. F. et al. Shadow-evaporated nanometre-sized gaps and their use in electrical research of nanocrystals. Nanotech 16, 631 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Bezryadin, A., Dekker, C. & Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Reed, M. A. et al. The Electrical Measurement of Molecular Junctions. Ann. NY Acad. Sci. 852, 133–144 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Martin, C. A., Smit, R. H. M., van Egmond, R., van der Zant, H. S. J. & van Ruitenbeek, J. M. A flexible low-temperature setup for {the electrical} characterization of single-molecule junctions. Rev. Sci. Instr. 82, 53907 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 18.

    Frisenda, R., Janssen, V. A. E. C., Grozema, F. C., van der Zant, H. S. J. & Renaud, N. Mechanically managed quantum interference in particular person π-stacked dimers. Nat. Chem. 8, 1099–1104 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Jeong, H., Li, H. B., Domulevicz, L. & Hihath, J. An On-Chip Break Junction System for Mixed Single-Molecule Conductance and Raman Spectroscopies. Adv. Func. Mat. 30, 2000615 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Park, H., Lim, A. Ok. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Sato, T., Ahmed, H., Brown, D. & Johnson, B. F. G. Single electron transistor utilizing a molecularly linked gold colloidal particle chain. J. Appl. Phys. 82, 696–701 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer gadgets. Phys. Rev. B 68, 035416 (2003).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 23.

    Kushmerick, J. G., Naciri, J., Yang, J. C. & Shashidhar, R. Conductance Scaling of Molecular Wires in Parallel. Nano Lett. 3, 897–900 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Jeong, H. et al. A brand new strategy for high-yield metallic – molecule – metallic junctions by direct metallic switch methodology. Nanotech 26, 25601 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Yu, Q. et al. In-Vacuum Projection of Nanoparticles for On-Chip Tunneling Spectroscopy. ACS Nano 7, 1487–1494 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Nijhuis, C. A., Reus, W. F., Barber, J. R. & Whitesides, G. M. Comparability of SAM-Primarily based Junctions with Ga2O3/EGaIn High Electrodes to Different Giant-Space Tunneling Junctions. J. Phys. Chem. C. 116, 14139–14150 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Krahne, R. et al. Fabrication of nanoscale gaps in built-in circuits. Appl. Phys. Lett. 81, 730–732 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Ray, V. et al. CMOS-compatible fabrication of room-temperature single-electron gadgets. Nat. Nano 3, 603–608 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    McCreery, R. L., Yan, H. & Bergren, A. J. A essential perspective on molecular digital junctions: there may be loads of room within the center. Phys. Chem. Chem. Phys. 15, 1065–1081 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Zhang, Q. et al. Graphene as a Promising Electrode for Low-Present Attenuation in Nonsymmetric Molecular Junctions. Nano Lett. 16, 6534–6540 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 31.

    Gehring, P. et al. Discipline-Impact Management of Graphene-Fullerene Thermoelectric Nanodevices. Nano Lett. 17, 7055–7061 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 32.

    Cao, Y. et al. Constructing Excessive-Throughput Molecular Junctions Utilizing Indented Graphene Level Contacts. Angew. Chem. Int. 124, 12394–12398 (2012).

    Article 

    Google Scholar
     

  • 33.

    El Abbassi, M. et al. Strong graphene-based molecular gadgets. Nat. Nano. 14, 957–961 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Wang, G., Kim, Y., Choe, M., Kim, T.-W. & Lee, T. A New Strategy for Molecular Digital Junctions with a Multilayer Graphene Electrode. Adv. Mat. 23, 755–760 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Li, B. et al. Cross-plane conductance by way of a graphene/molecular monolayer/Au sandwich. Nanoscale 10, 19791–19798 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 36.

    Search engine marketing, S. et al. Resolution-Processed Diminished Graphene Oxide Movies as Digital Contacts for Molecular Monolayer Junctions. Angew. Chem. Int. 51, 108–112 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Music, P. et al. Noncovalent Self-Assembled Monolayers on Graphene as a Extremely Secure Platform for Molecular Tunnel Junctions. Adv. Mat. 28, 631–639 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Lu, C., Zhang, D., van der Zande, A., Kim, P. & Herman, I. P. Digital transport in nanoparticle monolayers sandwiched between graphene electrodes. Nanoscale 6, 14158–14162 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Geim, A. Ok. Graphene: standing and prospects. Science 324, 1530–1534 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Ferrari, A. C. et al. Science and expertise roadmap for graphene, associated two-dimensional crystals, and hybrid techniques. Nanoscale 7, 4598–4810 (2015).

  • 41.

    Jung, D. R., Czanderna, A. W. & Herdt, G. C. Interactions and penetration at metallic/self-assembled natural monolayer interfaces. J. Vac. Sci. Tech. A 14, 1779–1787 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 42.

    Haick, H., Niitsoo, O., Ghabboun, J. & Cahen, D. Electrical Contacts to Natural Molecular Movies by Metallic Evaporation: impact of Contacting Particulars. J. Phys. Chem. C. 111, 2318–2329 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Bonaccorso, F. et al. Manufacturing and processing of graphene and 2nd crystals. Mater. Immediately 15, 564–589 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Bae, S. et al. Roll-to-roll manufacturing of 30-inch graphene movies for clear electrodes. Nat. Nano. 5, 574–578 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Giambra, M. A. et al. Wafer-Scale Integration of Graphene-Primarily based Photonic Units. ACS Nano 15, 3171–3187 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Gao, J. et al. Quantum Dot Dimension Dependent J-V Traits in Heterojunction ZnO-PbS Quantum Dot Photo voltaic Cells. Nano Lett. 11, 1002–1008 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 47.

    Mullen, Ok., Ben-Jacob, E., Jaklevic, R. C. & Schuss, Z. I-V traits of coupled ultrasmall-capacitance regular tunnel junctions. Phys. Rev. B 37, 98–105 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 48.

    Hanna, A. E. & Tinkham, M. Variation of the Coulomb staircase in a two-junction system by fractional electron cost. Phys. Rev. B 44, 5919–5922 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    Love, J. C., Estroff, L. A., Kriebel, J. Ok., Nuzzo, R. G. & Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals as a Type of Nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Nair, R. R. et al. Fantastic Construction Fixed Defines Visible Transparency of Graphene. Science 320, 1308 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 51.

    Zhang, Y. et al. Pressure Modulation of Graphene by Nanoscale Substrate Curvatures: a molecular view. Nano Lett. 18, 2098–2104 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Osváth, Z. et al. The construction and properties of graphene on gold nanoparticles. Nanoscale 7, 5503–5509 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 53.

    Li, X. et al. Giant-Space Synthesis of Excessive-High quality and Uniform Graphene Movies on Copper Foils. Science 324, 1312–1314 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Lagatsky, A. A. et al. 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. 102, 13113 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 55.

    Ferrari, A. C. et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 56.

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nano. 3, 210–215 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Brown, P. R. et al. Vitality Stage Modification in Lead Sulfide Quantum Dot Skinny Movies by way of Ligand Trade. ACS Nano 8, 5863–5872 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 58.

    Xu, F. et al. Impression of Completely different Floor Ligands on the Optical Properties of PbS Quantum Dot Solids. Mater 8, 1858–1870 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Marcus D.H., Donald E.C., David C.L., Tim Vandermeersch, E. Z. & Hutchison, G. R. Avogadro: a sophisticated semantic chemical editor, visualization, and evaluation platform (2012). URL http://avogadro.cc/

  • 60.

    Gunawan, A. A. et al. Ligands in PbSe Nanocrystals: characterizations and Plasmonic Interactions. Microsc. Microanalys. 19, 1506–1507 (2013).

    Article 

    Google Scholar
     

  • 61.

    Szwajca, A., Wei, J., Schukfeh, M. I. & Tornow, M. Self-assembled monolayers of alkyl-thiols on InAs: a Kelvin probe drive microscopy examine. Surf. Sci. 633, 53–59 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Rezek, B. et al. Synthesis, construction, and opto-electronic properties of organic-based nanoscale heterojunctions. Nano. Res. Lett. 6, 238 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 63.

    Tran Khac, B.-C., DelRio, F. W. & Chung, Ok.-H. Interfacial Energy and Floor Harm Traits of Atomically Skinny h-BN, MoS2, and Graphene. ACS Appl. Mat. Interf. 10, 9164–9177 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 64.

    Sauerbrey, G. Using quarts oscillators for weighing skinny layers and for microweighing. Z. Phys. 155, 206–222 (1959).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 65.

    Weiss, E. A. et al. Si/SiO2-Templated Formation of Ultraflat Metallic Surfaces on Glass, Polymer, and Solder Helps: their Use as Substrates for Self-Assembled Monolayers. Langmuir 23, 9686–9694 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 66.

    Banner, L. T., Richter, A. & Pinkhassik, E. Pinhole-free large-grained atomically easy Au(111) substrates ready by flame-annealed template stripping. Surf. Interf. Anal. 41, 49–55 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Canet-Ferrer, J., Coronado, E., Forment-Aliaga, A. & Pinilla-Cienfuegos, E. Correction of the tip convolution results within the imaging of nanostructures studied by way of scanning drive microscopy. Nanotech 25, 395703 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 68.

    Fruhman, J. M., Astier, H. P. A. G. & Ford, C. J. B. College of Cambridge information repository. https://doi.org/10.17863/CAM.66696.



  • Source link