GRAPHENE

Ion sieving in graphene oxide membranes via cationic control of

  • 1

    Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    ADS  CAS  Article  Google Scholar 

  • 2

    Joshi, R. Ok. et al. Exact and ultrafast molecular sieving via graphene oxide membranes. Science 343, 752–754 (2014)

    ADS  CAS  Article  Google Scholar 

  • 3

    Elimelech, M. & Phillip, W. A. The way forward for seawater desalination: power, expertise, and the surroundings. Science 333, 712–717 (2011)

    ADS  CAS  Article  Google Scholar 

  • 4

    Gin, D. L. & Noble, R. D. Designing the subsequent era of chemical separation membranes. Science 332, 674–676 (2011)

    ADS  CAS  Article  Google Scholar 

  • 5

    Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013)

    CAS  Article  Google Scholar 

  • 6

    Liu, G. P., Jin, W. Q. & Xu, N. P. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015)

    CAS  Article  Google Scholar 

  • 7

    Solar, P. et al. Selective trans-membrane transport of alkali and alkaline earth cations via graphene oxide membranes based mostly on cation-π interactions. ACS Nano 8, 850–859 (2014)

    CAS  Article  Google Scholar 

  • 8

    Surwade, S. P. et al. Water desalination utilizing nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015)

    ADS  CAS  Article  Google Scholar 

  • 9

    Lin, L. C. & Grossman, J. C. Atomistic understandings of lowered graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat. Commun. 6, 8335 (2015)

    ADS  CAS  Article  Google Scholar 

  • 10

    Celebi, Ok. et al. Final permeation throughout atomically skinny porous graphene. Science 344, 289–292 (2014)

    ADS  CAS  Article  Google Scholar 

  • 11

    Kim, H. W. et al. Selective fuel transport via few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013)

    ADS  CAS  Article  Google Scholar 

  • 12

    Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013)

    ADS  CAS  Article  Google Scholar 

  • 13

    Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving via porous graphene. Nat. Nanotechnol. 7, 728–732 (2012)

    ADS  CAS  Article  Google Scholar 

  • 14

    Liu, Y. X., Dong, X. C. & Chen, P. Organic and chemical sensors based mostly on graphene supplies. Chem. Soc. Rev. 41, 2283–2307 (2012)

    CAS  Article  Google Scholar 

  • 15

    Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes via two-dimensional crystals. Science 351, 68–70 (2016)

    ADS  CAS  Article  Google Scholar 

  • 16

    Yao, F. et al. Diffusion mechanism of lithium ion via basal aircraft of layered graphene. J. Am. Chem. Soc. 134, 8646–8654 (2012)

    CAS  Article  Google Scholar 

  • 17

    Wang, H. L. et al. Graphene-wrapped sulfur particles as a chargeable lithium-sulfur battery cathode materials with excessive capability and biking stability. Nano Lett. 11, 2644–2647 (2011)

    ADS  CAS  Article  Google Scholar 

  • 18

    De Volder, M. F. L ., Tawfick, S. H ., Baughman, R. H. & Hart, A. J. Carbon nanotubes: current and future business functions. Science 339, 535–539 (2013)

    ADS  CAS  Article  Google Scholar 

  • 19

    Koga, Ok., Gao, G. T., Tanaka, H. & Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802–805 (2001)

    ADS  CAS  Article  Google Scholar 

  • 20

    Liu, J., Shi, G. S., Guo, P., Yang, J. R. & Fang, H. P. Blockage of water movement in carbon nanotubes by ions because of interactions between cations and fragrant rings. Phys. Rev. Lett. 115, 164502 (2015)

    ADS  Article  Google Scholar 

  • 21

    Huang, H. B. et al. Ultrafast viscous water movement via nanostrand-channelled graphene oxide membranes. Nat. Commun. 4, 2979 (2013)

    ADS  Article  Google Scholar 

  • 22

    Goh, Ok. et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability. Adv. Funct. Mater. 25, 7348–7359 (2015)

    CAS  Article  Google Scholar 

  • 23

    Hung, W. S. et al. Cross-linking with diamine monomers to organize composite graphene oxide-framework membranes with various d-spacing. Chem. Mater. 26, 2983–2990 (2014)

    CAS  Article  Google Scholar 

  • 24

    Su, Y. et al. Impermeable barrier movies and protecting coatings based mostly on lowered graphene oxide. Nat. Commun. 5, 4843 (2014)

    ADS  CAS  Article  Google Scholar 

  • 25

    Solar, P., Wang, Ok. & Zhu, H. Latest developments in graphene-based membranes: construction, mass-transport mechanism and potential functions. Adv. Mater. 28, 2287–2310 (2016)

    CAS  Article  Google Scholar 

  • 26

    Shi, G. S. et al. Ion enrichment on the hydrophobic carbon-based floor in aqueous salt options because of cation-π interactions. Sci. Rep 3, 3436 (2013)

    Article  Google Scholar 

  • 27

    Abraham, J. et al. Tunable sieving of ions utilizing graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017)

    ADS  CAS  Article  Google Scholar 

  • 28

    Raidongia, Ok. & Huang, J. Nanofluidic ion transport via reconstructed layered supplies. J. Am. Chem. Soc. 134, 16528–16531 (2012)

    CAS  Article  Google Scholar 

  • 29

    Shen, J. et al. Membranes with quick and selective gas-transport channels of laminar graphene oxide for environment friendly CO2 seize. Angew. Chem. Int. Ed. 54, 578–582 (2015)

    Google Scholar 

  • 30

    Huang, Ok. et al. A graphene oxide membrane with extremely selective molecular separation of aqueous natural resolution. Angew. Chem. Int. Ed. 53, 6929–6932 (2014)

    CAS  Article  Google Scholar 

  • 31

    Mahadevi, A. S. & Sastry, G. N. Cation-π interplay: its function and relevance in chemistry, biology, and materials science. Chem. Rev. 113, 2100–2138 (2013)

    CAS  Article  Google Scholar 

  • Source