GRAPHENE

Long-range nontopological edge currents in charge-neutral graphene

  • 1.

    Abanin, D. A. et al. Big nonlocality close to the Dirac level in graphene. Science 332, 328–330 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Balakrishnan, J., Kok Wai Koon, G., Jaiswal, M., Castro Neto, A. H. & Özyilmaz, B. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nat. Phys. 9, 284–287 (2013).

    CAS  Google Scholar 

  • 3.

    Völkl, T. et al. Absence of a large spin Corridor impact in plasma-hydrogenated graphene. Phys. Rev. B 99, 085401 (2019).

    ADS  Google Scholar 

  • 4.

    Wei, P. et al. Robust interfacial alternate subject within the graphene/EuS heterostructure. Nat. Mater. 15, 711–716 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Stepanov, P. et al. Lengthy-distance spin transport by a graphene quantum Corridor antiferromagnet. Nat. Phys. 14, 907–911 (2018); correction 14, 967 (2018).

    CAS  Google Scholar 

  • 6.

    Wu, Z. et al. Intrinsic valley Corridor transport in atomically skinny MoS2. Nat. Commun. 10, 611 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Hung, T. Y. T., Rustagi, A., Zhang, S., Upadhyaya, P. & Chen, Z. Experimental remark of coupled valley and spin Corridor impact in p‐doped WSe2 gadgets. InfoMat 2, 968–974 (2020).

    CAS  Google Scholar 

  • 8.

    Sinha, S. et al. Bulk valley transport and Berry curvature spreading on the fringe of flat bands. Nat. Commun. 11, 5548 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Tanaka, M. et al. Cost impartial present technology in a spontaneous quantum Corridor antiferromagnet. Phys. Rev. Lett. 126, 016801 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Sui, M. et al. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. 11, 1027–1031 (2015).

    CAS  Google Scholar 

  • 12.

    Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Bandurin, D. A. et al. Adverse native resistance brought on by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Tiwari, P., Srivastav, S. Ok., Ray, S., Das, T. & Bid, A. Statement of time-reversal invariant helical edge modes in bilayer graphene/WSe2 heterostructure. ACS Nano 15, 916–922 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Li, Y. et al. Transition between canted antiferromagnetic and spin-polarized ferromagnetic quantum Corridor states in graphene on a ferrimagnetic insulator. Phys. Rev. B 101, 241405 (2020).

    ADS  CAS  Google Scholar 

  • 16.

    Veyrat, L. et al. Helical quantum Corridor part in graphene on SrTiO3. Science 367, 781–786 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Ribeiro, M., Energy, S. R., Roche, S., Hueso, L. E. & Casanova, F. Scale-invariant massive nonlocality in polycrystalline graphene. Nat. Commun. 8, 2198 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Wei, D. S. et al. Electrical technology and detection of spin waves in a quantum Corridor ferromagnet. Science 362, 229–233 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Nachawaty, A. et al. Massive nonlocality in macroscopic Corridor bars manufactured from epitaxial graphene. Phys. Rev. B 98, 045403 (2018).

    ADS  CAS  Google Scholar 

  • 20.

    Shimazaki, Y. et al. Technology and detection of pure valley present by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).

    CAS  Google Scholar 

  • 21.

    Gopinadhan, Ok. et al. Extraordinarily massive magnetoresistance in few-layer graphene/boron–nitride heterostructures. Nat. Commun. 6, 8337 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Renard, J., Studer, M. & Folks, J. A. Origins of nonlocality close to the neutrality level in graphene. Phys. Rev. Lett. 112, 116601 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Marmolejo-Tejada, J. M. et al. Deciphering the origin of nonlocal resistance in multiterminal graphene on hexagonal-boron-nitride with ab initio quantum transport: Fermi floor edge currents relatively than Fermi sea topological valley currents. J. Phys. Mater. 1, 015006 (2018).

    CAS  Google Scholar 

  • 24.

    Van Tuan, D. et al. Spin Corridor impact and origins of nonlocal resistance in adatom-decorated graphene. Phys. Rev. Lett. 117, 176602 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Halbertal, D. et al. Nanoscale thermal imaging of dissipation in quantum techniques. Nature 539, 407–410 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Chae, J. et al. Enhanced provider transport alongside edges of graphene gadgets. Nano Lett. 12, 1839–1844 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Allen, M. T. et al. Spatially resolved edge currents and guided-wave digital states in graphene. Nat. Phys. 12, 128–133 (2016).

    CAS  Google Scholar 

  • 28.

    Cui, Y.-T. et al. Unconventional correlation between quantum Corridor transport quantization and bulk state filling in gated graphene gadgets. Phys. Rev. Lett. 117, 186601 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Zhu, M. J. et al. Edge currents shunt the insulating bulk in gapped graphene. Nat. Commun. 8, 14552 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Marguerite, A. et al. Imaging work and dissipation within the quantum Corridor state in graphene. Nature 575, 628–633 (2019); correction 576, E6 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Dou, Z. et al. Imaging bulk and edge transport close to the Dirac level in graphene moiré superlattices. Nano Lett. 18, 2530–2537 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Avsar, A. et al. Spintronics in graphene and different two-dimensional supplies. Rev. Mod. Phys. 92, 021003 (2020).

    ADS  CAS  Google Scholar 

  • 33.

    Halbertal, D. et al. Imaging resonant dissipation from particular person atomic defects in graphene. Science 358, 1303–1306 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Lensky, Y. D., Track, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological valley currents in gapped Dirac supplies. Phys. Rev. Lett. 114, 256601 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Zhang, X.-P., Huang, C. & Cazalilla, M. A. Valley Corridor impact and nonlocal transport in strained graphene. 2D Mater. 4, 024007 (2017).

    Google Scholar 

  • 36.

    Wang, Z., Liu, H., Jiang, H. & Xie, X. C. Numerical examine of unfavorable nonlocal resistance and backflow present in a ballistic graphene system. Phys. Rev. B 100, 155423 (2019).

    ADS  CAS  Google Scholar 

  • 37.

    Xie, H.-Y. & Levchenko, A. Adverse viscosity and eddy circulate of the imbalanced electron–gap liquid in graphene. Phys. Rev. B 99, 045434 (2019).

    ADS  CAS  Google Scholar 

  • 38.

    Danz S. & Narozhny, B. N. Vorticity of viscous digital circulate in graphene. 2D Mater. 7, 035001 (2020).

    CAS  Google Scholar 

  • 39.

    Danz, S., Titov, M. & Narozhny, B. N. Big nonlocality in almost compensated two-dimensional semimetals. Phys. Rev. B 102, 081114 (2020).

    ADS  CAS  Google Scholar 

  • 40.

    Younger, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Corridor state. Nature 505, 528–532 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Abanin, D. A. et al. Dissipative quantum Corridor impact in graphene close to the Dirac level. Phys. Rev. Lett. 98, 196806 (2007).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 42.

    McEuen, P. L. et al. New resistivity for high-mobility quantum Corridor conductors. Phys. Rev. Lett. 64, 2062–2065 (1990).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Silvestrov, P. G. & Efetov, Ok. B. Cost accumulation on the boundaries of a graphene strip induced by a gate voltage: electrostatic method. Phys. Rev. B 77, 155436 (2008).

    ADS  Google Scholar 

  • 44.

    Akiho, T., Irie, H., Onomitsu, Ok. & Muraki, Ok. Counterflowing edge present and its equilibration in quantum Corridor gadgets with sharp edge potential: roles of incompressible strips and make contact with configuration. Phys. Rev. B 99, 121303 (2019).

    ADS  CAS  Google Scholar 

  • 45.

    Finkler, A. et al. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10, 1046–1049 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Finkler, A. et al. Scanning superconducting quantum interference machine on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instrum. 83, 073702 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Vasyukov, D. et al. A scanning superconducting quantum interference machine with single electron spin sensitivity. Nat. Nanotechnol. 8, 639–644 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Bagani, Ok. et al. Sputtered Mo66Re34 SQUID-on-tip for high-field magnetic and thermal nanoimaging. Phys. Rev. Appl. 12, 044062 (2019).

    ADS  CAS  Google Scholar 

  • 49.

    Herbschleb, E. D. et al. Direct imaging of coherent quantum transport in graphene p–n–p junctions. Phys. Rev. B 92, 125414 (2015).

    ADS  Google Scholar 

  • 50.

    Garcia, A. G. F., König, M., Goldhaber-Gordon, D. & Todd, Ok. Scanning gate microscopy of localized states in broad graphene constrictions. Phys. Rev. B 87, 085446 (2013).

    ADS  Google Scholar 

  • 51.

    Pascher, N., Bischoff, D., Ihn, T. & Ensslin, Ok. Scanning gate microscopy on a graphene nanoribbon. Appl. Phys. Lett. 101, 063101 (2012).

    ADS  Google Scholar 

  • 52.

    Kaverzin, A. A. & van Wees, B. J. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization. Phys. Rev. B 91, 165412 (2015).

    ADS  Google Scholar 

  • 53.

    Wang, Y., Cai, X., Reutt-Robey, J. & Fuhrer, M. S. Impartial-current Corridor results in disordered graphene. Phys. Rev. B 92, 161411 (2015).

    ADS  Google Scholar 

  • 54.

    Mishchenko, A. et al. Nonlocal response and anamorphosis: the case of few-layer black phosphorus. Nano Lett. 15, 6991–6995 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Wu, Y.-F. et al. Magnetic proximity impact in graphene coupled to a BiFeO3 nanoplate. Phys. Rev. B 95, 195426 (2017).

    ADS  Google Scholar 

  • 56.

    Komatsu, Ok. et al. Statement of the quantum valley Corridor state in ballistic graphene superlattices. Sci. Adv. 4, eaaq0194 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Hong, S. J., Belke, C., Rode, J. C., Brechtken, B. & Haug, R. J. Helical-edge transport close to ν = 0 of monolayer graphene. Present Utilized Physics 27, 25-30 (2021).

  • 58.

    Endo, Ok. et al. Topological valley currents in bilayer graphene/hexagonal boron nitride superlattices. Appl. Phys. Lett. 114, 243105 (2019).

    ADS  Google Scholar 

  • 59.

    Zhao, L. et al. Interference of chiral Andreev edge states. Nat. Phys. 16, 862–867 (2020).

    CAS  Google Scholar 

  • 60.

    Afzal, A. M., Min, Ok. H., Ko, B. M. & Eom, J. Statement of large spin–orbit interplay in graphene and heavy steel heterostructures. RSC Advances 9, 31797–31805 (2019).

    ADS  CAS  Google Scholar 

  • 61.

    Tang, C., Zhang, Z., Lai, S., Tan, Q. & Gao, W. Magnetic proximity impact in graphene/CrBr3 van der Waals heterostructures. Adv. Mater. 32, 1908498 (2020).

    CAS  Google Scholar 

  • 62.

    Ruzin, I. M. Corridor transport in nonuniform two-dimensional conductors. Phys. Rev. B 47, 15727–15734 (1993).

    ADS  CAS  Google Scholar 

  • 63.

    Ruzin, I. M., Cooper, N. R. & Halperin, B. I. Nonuniversal habits of finite quantum Corridor techniques on account of weak macroscopic inhomogeneities. Phys. Rev. B 53, 1558–1572 (1996).

    ADS  CAS  Google Scholar 

  • 64.

    Ilan, R., Cooper, N. R. & Stern, A. Longitudinal resistance of a quantum Corridor system with a density gradient. Phys. Rev. B 73, 235333 (2006).

    ADS  Google Scholar 

  • 65.

    Shylau, A. A., Zozoulenko, I. V., Xu, H. & Heinzel, T. Generic suppression of conductance quantization of interacting electrons in graphene nanoribbons in a perpendicular magnetic subject. Phys. Rev. B 82, 121410 (2010).

    ADS  Google Scholar 

  • 66.

    Vera-Marun, I. J. et al. Quantum Corridor transport as a probe of capacitance profile at graphene edges. Appl. Phys. Lett. 102, 013106 (2013).

    ADS  Google Scholar 

  • 67.

    Moreau, N. et al. Upstream modes and antidots poison graphene quantum Corridor impact. Preprint at https://arxiv.org/abs/2010.12499 (2020).

  • 68.

    Caridad, J. M. et al. Conductance quantization suppression within the quantum Corridor regime. Nat. Commun. 9, 659 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Seredinski, A. et al. Quantum Corridor-based superconducting interference machine. Sci. Adv. 5, eaaw8693 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Slizovskiy, S. & Fal’ko, V. I. Suppressed compressibility of quantum Corridor impact edge states in epitaxial graphene on SiC. Phys. Rev. B 97, 075404 (2018).

    ADS  CAS  Google Scholar 

  • 71.

    Graf, D. et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Shtanko, O. & Levitov, L. Robustness and universality of floor states in Dirac supplies. Proc. Natl Acad. Sci. USA 115, 5908–5913 (2018).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • 73.

    Abanin, D. A., Lee, P. A. & Levitov, L. S. Spin-filtered edge states and quantum Corridor impact in graphene. Phys. Rev. Lett. 96, 176803 (2006).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Kononov, A. et al. One-dimensional edge transport in few-layer WTe2. Nano Lett. 20, 4228–4233 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Vasko, F. T. & Zozoulenko, I. V. Conductivity of a graphene strip: width and gate-voltage dependencies. Appl. Phys. Lett. 97, 092115 (2010).

    ADS  Google Scholar 

  • 76.

    Klusek, Z. et al. Native digital edge states of graphene layer deposited on Ir(111) floor studied by STM/CITS. Appl. Surf. Sci. 252, 1221–1227 (2005).

    ADS  CAS  Google Scholar 

  • 77.

    Lee, E. J. H., Balasubramanian, Ok., Weitz, R. T., Burghard, M. & Kern, Ok. Contact and edge results in graphene gadgets. Nat. Nanotechnol. 3, 486–490 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Venugopal, A. et al. Efficient mobility of single-layer graphene transistors as a perform of channel dimensions. J. Appl. Phys. 109, 104511 (2011).

    ADS  Google Scholar 

  • 79.

    Li, J., Martin, I., Büttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nat. Phys. 7, 38–42 (2011).

    CAS  Google Scholar 

  • 80.

    Barraud, C. et al. Area impact within the quantum Corridor regime of a excessive mobility graphene wire. J. Appl. Phys. 116, 073705 (2014).

    ADS  Google Scholar 

  • 81.

    Yin, L.-J., Zhang, Y., Qiao, J.-B., Li, S.-Y. & He, L. Experimental remark of floor states and Landau ranges bending in bilayer graphene. Phys. Rev. B 93, 125422 (2016).

    ADS  Google Scholar 

  • 82.

    Woessner, A. et al. Close to-field photocurrent nanoscopy on naked and encapsulated graphene. Nat. Commun. 7, 10783 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Amet, F. et al. Supercurrent within the quantum Corridor regime. Science 352, 966–969 (2016).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • 84.

    Kraft, R. et al. Tailoring supercurrent confinement in graphene bilayer weak hyperlinks. Nat. Commun. 9, 1722 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Draelos, A. W. et al. Investigation of supercurrent within the quantum Corridor regime in graphene Josephson junctions. J. Low Temp. Phys. 191, 288–300 (2018).

    ADS  CAS  Google Scholar 

  • 86.

    Alavirad, Y., Lee, J., Lin, Z.-X. & Sau, J. D. Chiral supercurrent by a quantum Corridor weak hyperlink. Phys. Rev. B 98, 214504 (2018).

    ADS  CAS  Google Scholar 

  • 87.

    Wei, M. T. et al. Chiral quasiparticle tunneling between quantum Corridor edges in proximity with a superconductor. Phys. Rev. B 100, 121403 (2019).

    ADS  CAS  Google Scholar 

  • 88.

    Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616–620 (2011).

    CAS  Google Scholar 

  • 89.

    Nichele, F. et al. Edge transport within the trivial part of InAs/GaSb. New J. Phys. 18, 083005 (2016).

    ADS  Google Scholar 

  • 90.

    Akhmerov, A. R. & Beenakker, C. W. J. Boundary situations for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008).

    ADS  Google Scholar 

  • Source