GRAPHENE

Mid-infrared semimetal polarization detectors with configurable polarity transition


  • 1.

    Rubin, N. A. et al. Matrix Fourier optics allows a compact full-Stokes polarization digicam. Science 365, eaax1839 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Graydon, O. World place by polarization. Nat. Photonics 12, 318–318 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Evaluation of passive imaging polarimetry for distant sensing purposes. Appl. Choose. 45, 5453–5469 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Martínez, A. Polarimetry enabled by nanophotonics. Science 362, 750–751 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Lepetit, T. & Kanté, B. Simultaneous Stokes parameters. Nat. Photonics 9, 709–710 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous dedication of Stokes parameters. Optica 2, 716–723 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Gruev, V., Perkins, R. & York, T. CCD polarization imaging sensor with aluminum nanowire optical filters. Choose. Specific 18, 19087–19094 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Maruyama, Y. et al. 3.2-MP back-illuminated polarization picture sensor with four-directional air-gap wire grid and a pair of.5-μm pixels. IEEE Trans. Electron Units 65, 2544–2551 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Yuan, H. et al. Polarization-sensitive broadband photodetector utilizing a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with excessive detectivity at room temperature. Nat. Photonics 12, 601–607 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Tong, L. et al. Steady mid-infrared polarization imaging based mostly on quasi-2D tellurium at room temperature. Nat. Commun. 11, 2308 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Guo, Q. et al. Environment friendly electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 17, 986–992 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Li, W. et al. Circularly polarized mild detection with sizzling electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Ji, Z. et al. Photocurrent detection of the orbital angular momentum of sunshine. Science 368, 763–767 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Afshinmanesh, F., White, J. S., Cai, W. & Brongersma, M. L. Measurement of the polarization state of sunshine utilizing an built-in plasmonic polarimeter. Nanophotonics 1, 125–129 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Extremely polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Singh, A. et al. Polarization-sensitive nanowire photodetectors based mostly on solution-synthesized CdSe quantum-wire solids. Nano Lett. 7, 2999–3006 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Feng, J. et al. Crystallographically aligned perovskite buildings for high-performance polarization-sensitive photodetectors. Adv. Mater. 29, 1605993 (2017).

    Article 

    Google Scholar
     

  • 19.

    Xiao, M. et al. Symmetry-reduction enhanced polarization-sensitive photodetection in core–shell SbI3/Sb2O3 van der Waals heterostructure. Small 16, 1907172 (2020).

    Article 

    Google Scholar
     

  • 20.

    Wang, X. et al. Quick-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 139, 14976–14982 (2017).

    Article 

    Google Scholar
     

  • 21.

    Hong, T. et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6, 8978–8983 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Yang, Y. et al. Polarization‐delicate ultraviolet photodetection of anisotropic 2D GeS2. Adv. Funct. Mater. 29, 1900411 (2019).

    Article 

    Google Scholar
     

  • 23.

    Peng, Y. et al. Exploiting the majority photovoltaic impact in a 2D trilayered hybrid ferroelectric for extremely delicate polarized mild detection. Angew. Chem. Int. Ed. 59, 3933–3937 (2020).

    Article 

    Google Scholar
     

  • 24.

    Venuthurumilli, P. Ok., Ye, P. D. & Xu, X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in close to infrared. ACS Nano 12, 4861–4867 (2018).

    Article 

    Google Scholar
     

  • 25.

    Wu, D. et al. Extremely polarization-sensitive, broadband, self-powered photodetector based mostly on graphene/PdSe2/germanium heterojunction. ACS Nano 13, 9907–9917 (2019).

    Article 

    Google Scholar
     

  • 26.

    Zeng, L. et al. Multilayered PdSe2/perovskite Schottky junction for quick, self-powered, polarization-sensitive, broadband photodetectors, and picture sensor utility. Adv. Sci. 6, 1901134 (2019).

    Article 

    Google Scholar
     

  • 27.

    Pi, L. et al. Extremely in-plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity. Adv. Funct. Mater. 31, 2006774 (2020).

    Article 

    Google Scholar
     

  • 28.

    Kim, D. J. & Alexe, M. Bulk photovoltaic impact in monodomain BiFeO3 skinny movies. Appl. Phys. Lett. 110, 183902 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Bhatnagar, A., Roy Chaudhuri, A., Heon Kim, Y., Hesse, D. & Alexe, M. Position of area partitions within the irregular photovoltaic impact in BiFeO3. Nat. Commun. 4, 2835 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent technology and assortment in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Gabor, N. M. et al. Sizzling carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Woessner, A. et al. Close to-field photocurrent nanoscopy on naked and encapsulated graphene. Nat. Commun. 7, 10783 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Alonso-González, P. et al. Controlling graphene plasmons with resonant steel antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Giovannetti, G. et al. Doping graphene with steel contacts. Phys. Rev. Lett. 101, 026803 (2008).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 39.

    Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Yao, Y. et al. Excessive-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier technology and assortment. Nano Lett. 14, 3749–3754 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Wang, D. et al. Enhancing the graphene photocurrent utilizing floor plasmons and a p-n junction. Mild Sci. Appl. 9, 126 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Track, J. C. W. & Levitov, L. S. Shockley-Ramo theorem and long-range photocurrent response in gapless supplies. Phys. Rev. B 90, 075415 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Latil, S. & Henrard, L. Cost carriers in few-layer graphene movies. Phys. Rev. Lett. 97, 036803 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Liu, J., Xia, F., Xiao, D., García de Abajo, F. J. & Solar, D. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).

    Article 

    Google Scholar
     

  • 45.

    Bandurin, D. A. et al. Destructive native resistance attributable to viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 47.

    Sturman, B. I. & Fridkin, V. M. Photovoltaic and Picture-refractive Results in Noncentrosymmetric Supplies Vol. 8 (CRC, 1992).

  • 48.

    Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).

    Article 

    Google Scholar
     

  • 49.

    Tomberg, T., Muraviev, A., Ru, Q. & Vodopyanov, Ok. L. Background-free broadband absorption spectroscopy based mostly on interferometric suppression with a sign-inverted waveform. Optica 6, 147–151 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Zeng, L. et al. Van der Waals epitaxial development of mosaic‐like 2D platinum ditelluride layers for room‐temperature mid‐infrared photodetection as much as 10.6 µm. Adv. Mater. 32, 2004412 (2020).

    Article 

    Google Scholar
     



  • Source link