GRAPHENE

Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes


  • 1.

    Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Bocquet, L. & Tabeling, P. Physics and technological points of nanofluidics. Lab. Chip 14, 3143–3158 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Holt, J. Ok. et al. Quick mass transport by means of sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with natural solvent nanofiltration: a crucial assessment. Chem. Rev. 114, 10735–10806 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Chmiola, J. et al. Anomalous enhance in carbon capacitance at pore sizes lower than 1 nanometer. Science 313, 1760–1763 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Siria, A. et al. Large osmotic vitality conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity underneath nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Kavokine, N., Netz, R. R. & Bocquet, L. Fluids on the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021).

    Article 

    Google Scholar
     

  • 12.

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced movement in carbon nanotubes. Nature 438, 44 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Esfandiar, A. et al. Measurement impact in ion transport by means of Angstrom-scale slits. Science 358, 511–513 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Feng, J. et al. Statement of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion by means of layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Fumagalli, L. et al. Anomalously low dielectric fixed of confined water. Science 360, 1339–1342 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Mouterde, T. et al. Molecular streaming and its voltage management in Angström-scale channels. Nature 567, 87–90 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Siria, A., Bocquet, M. L. & Bocquet, L. New avenues for the large-scale harvesting of blue vitality. Nat. Rev. Chem. 1, 0091 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Tang, C. Y., Zhao, Y., Wang, R., Hélix-Nielsen, C. & Fane, A. G. Desalination by biomimetic aquaporin membranes: assessment of standing and prospects. Desalination 308, 34–40 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically remoted graphene nanopores. Nat. Nanotechnol. 10, 1053–1057 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Wang, L. et al. Basic transport mechanisms, fabrication and potential purposes of nanoporous atomically skinny membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Faucher, S. et al. Vital information gaps in mass transport by means of single-digit nanopores: a assessment and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Falk, Ok., Coasne, B., Pellenq, R., Ulm, F. J. & Bocquet, L. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat. Commun. 6, 6949 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    King, H. E. et al. Pore structure and connectivity in gasoline shale. Vitality Fuels 29, 1375–1390 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Vincent, O., Szenicer, A. & Stroock, A. D. Capillarity-driven flows on the continuum restrict. Comfortable Matter 12, 6656–6661 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Zhong, J. et al. Exploring anomalous fluid habits on the nanoscale: direct visualization and quantification through nanofluidic gadgets. Acc. Chem. Res. 53, 347–357 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. In the direction of single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Thompson, Ok. A. et al. N-Aryl-linked spirocyclic polymers for membrane separations of complicated hydrocarbon mixtures. Science 369, 310–315 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Celebi, Ok. et al. Final permeation throughout atomically skinny porous graphene. Science 344, 289–292 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Cohen-Tanugi, D. & Grossman, J. C. Water desalination throughout nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Wyss, R. M., Tian, T., Yazda, Ok., Park, H. G. & Shih, C. J. Macroscopic salt rejection by means of electrostatically gated nanoporous graphene. Nano Lett. 19, 6400–6409 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Yang, Y. et al. Giant-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Prozorovska, L. & Kidambi, P. R. State-of-the-art and future prospects for atomically skinny membranes from 2D supplies. Adv. Mater. 30, 1801179 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Thiruraman, J. P., Masih Das, P. & Drndić, M. Stochastic ionic transport in single atomic zero-dimensional pores. ACS Nano 14, 11831–11845 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Culp, T. E. et al. Nanoscale management of inner inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Marchena, M. et al. Dry switch of graphene to dielectrics and versatile substrates utilizing polyimide as a clear and steady intermediate layer. 2D Mater. 5, 035022 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 38.

    Kim, S. et al. Strong graphene moist switch course of by means of low molecular weight polymethylmethacrylate. Carbon 98, 352–357 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Boutilier, M. S. et al. Implications of permeation by means of intrinsic defects in graphene on the design of defect-tolerant membranes for gasoline separation. ACS Nano 8, 841–849 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Boutilier, M. S. H. et al. Molecular sieving throughout centimeter-scale single-layer nanoporous graphene membranes. ACS Nano 11, 5726–5736 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    O’Hern, S. C. et al. Selective molecular transport by means of intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 42.

    O’Hern, S. C. et al. Selective ionic transport by means of tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 43.

    Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Yang, Q. et al. Ultrathin graphene-based membrane with exact molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Gobin, O. C., Reitmeier, S. J., Jentys, A. & Lercher, J. A. Function of the floor modification on the transport of hexane isomers in ZSM-5. J. Phys. Chem. C 115, 1171–1179 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Funke, H. H., Argo, A. M., Falconer, J. L. & Noble, R. D. Separations of cyclic, branched, and linear hydrocarbon mixtures by means of silicalite membranes. Ind. Eng. Chem. Res. 36, 137–143 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Bárcia, P. S., Zapata, F., Silva, J. A. C., Rodrigues, A. E. & Chen, B. Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous steel—natural framework. J. Phys. Chem. B 111, 6101–6103 (2007).

    Article 
    CAS 

    Google Scholar
     

  • 48.

    Koh, D. Y., McCool, B. A., Deckman, H. W. & Energetic, R. P. Reverse osmosis molecular differentiation of natural liquids utilizing carbon molecular sieve membranes. Science 353, 804–807 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Heiranian, M., Taqieddin, A. & Aluru, N. R. Revisiting Sampson’s principle for hydrodynamic transport in ultrathin nanopores. Phys. Rev. Res. 2, 043153 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    O’Hern, S. C. et al. Nanofiltration throughout defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 51.

    Dong, G. et al. Vitality-efficient separation of natural liquids utilizing organosilica membranes through a reverse osmosis route. J. Memb. Sci. 597, 117758 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Liu, Q. et al. Molecular dynamics simulation of water-ethanol separation by means of monolayer graphene oxide membranes: vital position of O/C ratio and pore dimension. Sep. Purif. Technol. 224, 219–226 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Jang, D., Idrobo, J. C., Laoui, T. & Karnik, R. Water and solute transport ruled by tunable pore dimension distributions in nanoporous graphene membranes. ACS Nano 11, 10042–10052 (2017).

    CAS 
    Article 

    Google Scholar
     



  • Source link