GRAPHENE

Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene


  • 1.

    Bartels-Rausch, T. Ten issues we have to find out about ice and snow. Nature 494, 27–29 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Fitzner, M., Sosso, G. C., Cox, S. J. & Michaelides, A. The numerous faces of heterogeneous ice nucleation: interaction between floor morphology and hydrophobicity. J. Am. Chem. Soc. 137, 13658–13669 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Scatena, L. F. Water at hydrophobic surfaces: weak hydrogen bonding and robust orientation results. Science 292, 908–912 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Davis, J. G., Rankin, B. M., Gierszal, Ok. P. & Ben-Amotz, D. On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nat. Chem. 5, 796–802 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Kringle, L., Thornley, W. A., Kay, B. D. & Kimmel, G. A. Reversible structural transformations in supercooled liquid water from 135 to 245 Ok. Science 369, 1490–1492 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116, 7078–7116 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Knopf, D. A., Alpert, P. A. & Wang, B. The position of natural aerosol in atmospheric ice nucleation: a evaluation. ACS Earth Area Chem. 2, 168–202 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Hama, T. & Watanabe, N. Floor processes on interstellar amorphous strong water: adsorption, diffusion, tunneling reactions, and nuclear-spin conversion. Chem. Rev. 113, 8783–8839 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Nicholls, A., Sharp, Ok. A. & Honig, B. Protein folding and affiliation: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct., Genet. 11, 281–296 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Tan, P. et al. Decoupling between the interpretation and rotation of water within the proximity of a protein molecule. Phys. Chem. Chem. Phys. 22, 18132–18140 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Kreder, M. J., Alvarenga, J., Kim, P. & Aizenberg, J. Design of anti-icing surfaces: clean, textured or slippery? Nat. Rev. Mater. 1, 15003– (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 12.

    Schutzius, T. M. et al. Physics of Icing and Rational Design of Surfaces with Extraordinary Icephobicity. Langmuir 31, 4807–4821 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Belyaeva, L. A. & Schneider, G. F. Wettability of graphene. Surf. Sci. Rep. 75, 100482 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Akhtar, N. et al. Pillars or Pancakes? Self-Cleansing Surfaces with out Coating. Nano Lett. 18, 7509–7514 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Mum or dad, O. & Ilinca, A. Anti-icing and de-icing strategies for wind generators: Important evaluation. Chilly Reg. Sci. Technol. 65, 88–96 (2011).

    Article 

    Google Scholar
     

  • 16.

    Lv, J., Track, Y., Jiang, L. & Wang, J. Bio-Impressed Methods for Anti-Icing. ACS Nano 8, 3152–3169 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Guo, J. et al. Actual-space imaging of interfacial water with submolecular decision. Nat. Mater. 13, 184–189 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Hodgson, A. & Haq, S. Water adsorption and the wetting of steel surfaces. Surf. Sci. Rep. 64, 381–451 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 20.

    Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at steel interfaces. Nat. Mater. 11, 667–674 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Maier, S. & Salmeron, M. How does water moist a floor? Acc. Chem. Res. 48, 2783–2790 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Maier, S., Lechner, B. A. J., Somorjai, G. A. & Salmeron, M. Development and construction of the primary layers of ice on Ru(0001) and Pt(111). J. Am. Chem. Soc. 138, 3145–3151 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 23.

    Shimizu, T. Ok., Maier, S., Verdaguer, A., Velasco-Velez, J.-J. & Salmeron, M. Water at surfaces and interfaces: From molecules to ice and bulk liquid. Prog. Surf. Sci. 93, 87–107 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Heidorn, S.-C., Bertram, C., Cabrera-Sanfelix, P. & Morgenstern, Ok. Consecutive mechanism within the diffusion of D2O on a NaCl(100) bilayer. ACS Nano 9, 3572–3578 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 25.

    Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from Ab Initio strategies: very totally different slippage regardless of very comparable interface buildings. Nano Lett. 14, 6872–6877 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Ma, M., Tocci, G., Michaelides, A. & Aeppli, G. Quick diffusion of water nanodroplets on graphene. Nat. Mater. 15, 66–71 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 27.

    Jardine, A., Hedgeland, H., Alexandrowicz, G., Allison, W. & Ellis, J. Helium-3 spin-echo: rules and utility to dynamics at surfaces. Prog. Surf. Sci. 84, 323 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Tamtögl, A. et al. Graphene on Ni(111): digital corrugation and dynamics from helium atom scattering. J. Phys. Chem. C 119, 25983–25990 (2015).

    Article 
    CAS 

    Google Scholar
     

  • 29.

    Yang, D.-S. & Zewail, A. H. Ordered water construction at hydrophobic graphite interfaces noticed by 4d, ultrafast electron crystallography. Proc. Natl Acad. Sci. USA 106, 4122–4126 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Andersson, P. U., Suter, M. T., Marković, N. & Pettersson, J. B. C. Water condensation on graphite studied by elastic helium scattering and molecular dynamics simulations. J. Phys. Chem. C 111, 15258–15266 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Souda, R. & Aizawa, T. Crystallization kinetics of water on graphite. Phys. Chem. Chem. Phys. 20, 21856–21863 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Corem, G. et al. Ordered H2O buildings on a weakly interacting floor: a helium diffraction research of H2O/Au(111). J. Phys. Chem. C 117, 23657–23663 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kimmel, G. A. et al. No confinement wanted: remark of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131, 12838–12844 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Algara-Siller, G. et al. Sq. ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Shih, C.-J., Strano, M. S. & Blankschtein, D. Wetting translucency of graphene. Nat. Mater. 12, 866–869 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Zhao, G. et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Standop, S., Michely, T. & Busse, C. H2O on graphene/Ir(111): a periodic array of frozen droplets. J. Phys. Chem. C 119, 1418–1423 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Leenaerts, O., Partoens, B. & Peeters, F. M. Water on graphene: hydrophobicity and dipole second utilizing density practical concept. Phys. Rev. B 79, 235440 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Smith, R. S., Matthiesen, J. & Kay, B. D. Desorption kinetics of methanol, ethanol, and water from graphene. J. Phys. Chem. A 118, 8242–8250 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Pusey, P. N. The dynamics of interacting Brownian particles. J. Phys. A 8, 1433–1440 (1975).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Leitner, M., Sepiol, B., Stadler, L.-M., Pfau, B. & Vogl, G. Atomic diffusion studied with coherent X-rays. Nat. Mater. 8, 717–720 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Ward, D. J. et al. Inter-adsorbate forces and coherent scattering in helium spin-echo experiments. Phys. Chem. Chem. Phys. 23, 7799–7805 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Tamtögl, A. et al. Nanoscopic diffusion of water on a topological insulator. Nat. Commun. 11, 278 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 44.

    Tuddenham, F. E. et al. Lineshapes in quasi-elastic scattering from species hopping between non-equivalent floor websites. Surf. Sci. 604, 1459–1475 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 45.

    Böttcher, S. et al. Graphene on ferromagnetic surfaces and its functionalization with water and ammonia. Nanoscale Res. Lett. 6, 1–7 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 46.

    Ma, J. et al. Adsorption and diffusion of water on graphene from first rules. Phys. Rev. B 84, 033402 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 47.

    Foglia, F. et al. Aquaporin-like water transport in nanoporous crystalline layered carbon nitride. Sci. Adv. 6, eabb6011 (2020). 

  • 48.

    Perakis, F. et al. Diffusive dynamics throughout the high-to-low density transition in amorphous ice. Proc. Natl. Acad. Sci. USA 114, 8193–8198 (2017).

  • 49.

    Guinea, F. & Walet, N. R. Interplay between level costs, dipoles and graphene layers. Preprint at https://arxiv.org/abs/1605.08429 (2016).

  • 50.

    Lischka, M. & Groß, A. Hydrogen adsorption on an open steel floor: H2/Pd(210). Phys. Rev. B 65, 075420 (2002).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 51.

    Sendner, C. & Groß, A. Kinetic Monte Carlo simulations of the interplay of oxygen with Pt(111). J. Chem. Phys. 127, 014704 (2007).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 52.

    Lukas, S., Witte, G. & Wöll, C. Novel mechanism for molecular self-assembly on steel substrates: unidirectional rows of pentacene on cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 88, 028301 (2001).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 53.

    Fernandez-Torrente, I. et al. Lengthy-range repulsive interplay between molecules on a steel floor induced by cost switch. Phys. Rev. Lett. 99, 176103 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Yokoyama, T., Takahashi, T., Shinozaki, Ok. & Okamoto, M. Quantitative evaluation of long-range interactions between adsorbed dipolar molecules on Cu(111). Phys. Rev. Lett. 98, 206102 (2007).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 55.

    Stadler, C., Hansen, S., Kröger, I., Kumpf, C. & Umbach, E. Tuning intermolecular interplay in long-range-ordered submonolayer natural movies. Nat. Phys. 5, 153–158 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Chakarov, D., Österlund, L. & Kasemo, B. Water adsorption on graphite (0001). Vacuum 46, 1109–1112 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 57.

    Bolina, A. S., Wolff, A. J. & Brown, W. A. Reflection absorption infrared spectroscopy and temperature-programmed desorption research of the adsorption and desorption of amorphous and crystalline water on a graphite floor. J. Phys. Chem. B 109, 16836–16845 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 58.

    Sadhukhan, M. & Tkatchenko, A. Lengthy-range repulsion between spatially confined van der Waals dimers. Phys. Rev. Lett. 118, 210402 (2017).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 59.

    Alexandrowicz, G., Jardine, A. P., Hedgeland, H., Allison, W. & Ellis, J. Onset of 3D collective floor diffusion within the presence of lateral interactions: Na/Cu(001). Phys. Rev. Lett. 97, 156103 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    An, S. et al. A complete evaluation on wettability, desalination, and purification utilizing graphene-based supplies at water interfaces. Catal. At present 295, 14–25 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 61.

    Xu, Ok., Cao, P. & Heath, J. R. Graphene visualizes the primary water adlayers on mica at ambient situations. Science 329, 1188–1191 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 62.

    He, Ok. T., Wooden, J. D., Doidge, G. P., Pop, E. & Lyding, J. W. Scanning tunneling microscopy research and nanomanipulation of graphene-coated water on mica. Nano Lett. 12, 2665–2672 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 63.

    Avidor, N. & Allison, W. Helium diffraction as a probe of construction and proton order on mannequin ice surfaces. J. Phys. Chem. Lett. 7, 4520–4523 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 64.

    Bahn, E., Tamtögl, A., Ellis, J., Allison, W. & Fouquet, P. Construction and dynamics investigations of {a partially} hydrogenated graphene/Ni(111) floor. Carbon 114, 504–510 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 65.

    Lin, C. et al. Ice nucleation on a corrugated floor. J. Am. Chem. Soc. 140, 15804–15811 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Tamtögl, A. et al. Atom-surface van der Waals potentials of topological insulators and semimetals from scattering measurements. Phys. Chem. Chem. Phys. 23, 7637–7652 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 67.

    Jones, A., Tamtögl, A., Calvo-Almazán, I. & Hansen, A. Steady compressed sensing for floor dynamical processes with helium atom scattering. Sci. Rep. 6, 27776 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Holst, B. et al. Materials properties significantly suited to be measured with helium scattering: chosen examples from 2D supplies, van der Waals heterostructures, glassy supplies, catalytic substrates, topological insulators and superconducting radio frequency supplies. Phys. Chem. Chem. Phys. 23, 7653–7672 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 69.

    Clark, S. J. et al. First rules strategies utilizing CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2009).


    Google Scholar
     

  • 70.

    Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 71.

    Tkatchenko, A. & Scheffler, M. Correct molecular Van Der Waals interactions from ground-state electron density and free-atom reference knowledge. Phys. Rev. Lett. 102, 073005 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 72.

    Monkhorst, H. J. & Pack, J. D. Particular factors for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 73.

    Vanderbilt, D. Comfortable self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 74.

    Ala-Nissila, T., Ferrando, R. & Ying, S. C. Collective and single particle diffusion on surfaces. Adv. Phys. 51, 949–1078 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 75.

    Sakong, S., Henß, A.-Ok., Wintterlin, J. & Groß, A. Diffusion on a crowded aurface: kMC Simulations. J. Phys. Chem. C 124, 15216–15224 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 76.

    Tamtögl, A. et al. Movement of water monomers reveals a kinetic barrier to ice nucleation on graphene. https://doi.org/10.17863/CAM.55076 (2021).



  • Source link