GRAPHENE

Review on modeling of the anode solid electrolyte interphase (SEI)

  • 1.

    Tarascon, J. M. & Armand, M. Points and challenges dealing with rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  • 2.

    Zu, C.-X. & Li, H. Thermodynamic evaluation on power densities of batteries. Power Environ. Sci. 4, 2614–2624 (2011).

    Article  Google Scholar 

  • 3.

    Goodenough, J. B. & Park, Okay.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  Google Scholar 

  • 4.

    Dey, A. N. Movie formation on lithium anode in propylene carbonate. J. Electrochem. Soc. 117, C248 (1970).

    Article  Google Scholar 

  • 5.

    Peled, E. The electrochemical conduct of alkali and alkaline earth metals in nonaqueous battery techniques—the stable electrolyte interphase mannequin. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article  Google Scholar 

  • 6.

    Peled, E., Golodnitsky, D. & Ardel, G. Superior mannequin for stable electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997).

    Article  Google Scholar 

  • 7.

    Aurbach, D. et al. New insights into the interactions between electrode supplies and electrolyte options for superior nonaqueous batteries. J. Energy Sources 81, 95–111 (1999).

    Article  Google Scholar 

  • 8.

    Winter, M. The stable electrolyte interphase—an important and the least understood stable electrolyte in rechargeable Li batteries. Z. Fur Phys. Chem. 223, 1395–1406 (2009).

    Article  Google Scholar 

  • 9.

    Verma, P., Maire, P. & Novak, P. A assessment of the options and analyses of the stable electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  Google Scholar 

  • 10.

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  Google Scholar 

  • 11.

    Xing, L., Borodin, O., Smith, G. D. & Li, W. Density practical principle research of the function of anions on the oxidative decomposition response of propylene carbonate. J. Phys. Chem. A. 115, 13896–13905 (2011).

    Article  Google Scholar 

  • 12.

    Zhang, X. R., Pugh, J. Okay. & Ross, P. N. Computation of thermodynamic oxidation potentials of natural solvents utilizing density practical principle. J. Electrochem. Soc. 148, E183–E188 (2001).

    Article  Google Scholar 

  • 13.

    Borodin, O. & Jow, T. R. in Non-Aqueous Electrolytes for Lithium Batteries. Vol. 33 ECS Transactions (eds B. Lucht, W. A. Henderson, T. R. Jow, & M. Ue) 77–84 (The electrochemical Society, NJ, 2011).

  • 14.

    Li, T. & Balbuena, P. B. Theoretical research of the discount of ethylene carbonate. Chem. Phys. Lett. 317, 421–429 (2000).

    Article  Google Scholar 

  • 15.

    Wang, Y. X., Nakamura, S., Ue, M. & Balbuena, P. B. Theoretical research to grasp floor chemistry on carbon anodes for lithium-ion batteries: discount mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123, 11708–11718 (2001).

    Article  Google Scholar 

  • 16.

    Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: present understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  Google Scholar 

  • 17.

    Delp, S. A. et al. Significance of discount and oxidation stability of excessive voltage electrolytes and components. Electrochim. Acta 209, 498–510 (2016).

    Article  Google Scholar 

  • 18.

    Wu, F., Borodin, O. & Yushin, G. In situ floor safety for enhancing stability and efficiency of conversion-type cathodes. MRS Energ. Maintain. 4, E9 (2017).

  • 19.

    Website positioning, D. M., Borodin, O., Han, S.-D., Boyle, P. D. & Henderson, W. A. Electrolyte solvation and ionic affiliation II. Acetonitrile-lithium salt mixtures: extremely dissociated salts. J. Electrochem. Soc. 159, A1489–A1500 (2012).

    Article  Google Scholar 

  • 20.

    Borodin, O. et al. Modeling perception into battery electrolyte electrochemical stability and interfacial construction. Acc. Chem. Res. 50, 2886–2894 (2017).

    Article  Google Scholar 

  • 21.

    Vetter, J. et al. Ageing mechanisms in lithium-ion batteries. J. Energy Sources 147, 269–281 (2005).

    Article  Google Scholar 

  • 22.

    Xu, Okay. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  Google Scholar 

  • 23.

    Xu, Okay. Electrolytes and interphases in Li-ion batteries and past. Chem. Rev. 114, 11503–11618 (2014).

    Article  Google Scholar 

  • 24.

    Agubra, V. A. & Fergus, J. W. The formation and stability of the stable electrolyte interface on the graphite anode. J. Energy Sources 268, 153–162 (2014).

    Article  Google Scholar 

  • 25.

    An, S. J. et al. The state of understanding of the lithium-ion-battery graphite stable electrolyte interphase (SEI) and its relationship to formation biking. Carbon N.Y. 105, 52–76 (2016).

    Article  Google Scholar 

  • 26.

    Nazri, G. & Muller, R. H. Composition of floor layers on Li electrodes in PC, LiClO4 of very low water content material. J. Electrochem. Soc. 132, 2050–2054 (1985).

    Article  Google Scholar 

  • 27.

    Aurbach, D., Daroux, M. L., Faguy, P. W. & Yeager, E. Identification of floor movies shaped on lithium in propylene carbonate options. J. Electrochem. Soc. 134, 1611–1620 (1987).

    Article  Google Scholar 

  • 28.

    Kanamura, Okay., Tamura, H. & Takehara, Z.-I. XPS evaluation of a lithium floor immersed in propylene carbonate resolution containing numerous salts. J. Electroanal. Chem. 333, 127–142 (1992).

    Article  Google Scholar 

  • 29.

    Kanamura, Okay., Tamura, H., Shiraishi, S. & Takehara, Zi XPS evaluation of lithium surfaces following immersion in numerous solvents containing LiBF4. J. Electrochem. Soc. 142, 340–347 (1995).

    Article  Google Scholar 

  • 30.

    Lu, P. & Harris, S. J. Lithium transport throughout the stable electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011).

    Article  Google Scholar 

  • 31.

    Shi, S. Q. et al. Direct calculation of Li-ion transport within the stable electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012).

    Article  Google Scholar 

  • 32.

    v. Cresce, A., Russell, S. M., Baker, D. R., Gaskell, Okay. J. & Xu, Okay. In situ and quantitative characterization of stable electrolyte interphases. Nano. Lett. 14, 1405–1412 (2014).

    Article  Google Scholar 

  • 33.

    Zheng, J. et al. 3D visualization of inhomogeneous multi-layered construction and Younger’s modulus of the stable electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 16, 13229–13238 (2014).

    Article  Google Scholar 

  • 34.

    Zhang, Q. L. et al. Synergetic Results of inorganic elements in stable electrolyte interphase on excessive cycle effectivity of lithium ion batteries. Nano Lett. 16, 2011–2016 (2016).

    Article  Google Scholar 

  • 35.

    Slane, S. M. & Foster, D. L. Lithium ion rechargeable intercalation cell. US1076-H; CA2053746-A (1992).

  • 36.

    Zhang, W.-J. A assessment of the electrochemical efficiency of alloy anodes for lithium-ion batteries. J. Energy Sources 196, 13–24 (2011).

    Article  Google Scholar 

  • 37.

    Xu, W. et al. Lithium steel anodes for rechargeable batteries. Power Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  • 38.

    Li, Y., Leung, Okay. & Qi, Y. Computational exploration of the Li-electrode/electrolyte interface within the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res. 49, 2363–2370 (2016).

    Article  Google Scholar 

  • 39.

    Zhang, Okay., Lee, G.-H., Park, M., Li, W. & Kang, Y.-M. Current Developments of the Lithium Metallic Anode for Rechargeable Non-AqueousBatteries. Adv. Power Mater. 6, 1600811 (2016).

  • 40.

    Cheng, X. B. et al. A assessment of stable electrolyte interphases on lithium steel anode. Adv. Sci. 3, 1500213 (2016).

    Article  Google Scholar 

  • 41.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium steel anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).

    Article  Google Scholar 

  • 42.

    Fong, R., Von Sacken, U. & Dahn, J. R. Research of lithium intercalation into carbons utilizing nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    Article  Google Scholar 

  • 43.

    Naji, A., Ghanbaja, J., Humbert, B., Willmann, P. & Billaud, D. Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte. characterization of the passivating layer by transmission electron microscopy and fourier-transform infrared spectroscopy. J. Energy Sources 63, 33–39 (1996).

    Article  Google Scholar 

  • 44.

    Novak, P., Joho, F., Imhof, R., Panitz, J. C. & Haas, O. In situ investigation of the interplay between graphite and electrolyte options. J. Energy Sources 81, 212–216 (1999).

    Article  Google Scholar 

  • 45.

    Soto, F. A., Martinez de la Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Modeling solid-electrolyte interfacial phenomena in silicon anodes. Curr. Opin. Chem. Eng. 13, 179–185 (2016).

    Article  Google Scholar 

  • 46.

    Meng, Y. S. & Arroyo-de Dompablo, M. E. First rules computational supplies design for power storage supplies in lithium ion batteries. Power Environ. Sci. 2, 589–609 (2009).

    Article  Google Scholar 

  • 47.

    Ouyang, C. & Chen, L. Physics in direction of subsequent technology Li secondary batteries supplies: a brief assessment from computational supplies design perspective. Sci. China Phys. Mech. 56, 2278–2292 (2013).

    Article  Google Scholar 

  • 48.

    Franco, A. A. Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: ideas, strategies and challenges. RSC Adv. 3, 13027–13058 (2013).

    Article  Google Scholar 

  • 49.

    Reddy, V. P., Blanco, M. & Bugga, R. Boron-based anion receptors in lithium-ion and metal-air batteries. J. Energy Sources 247, 813–820 (2014).

    Article  Google Scholar 

  • 50.

    Shi, S. et al. Multi-scale computation strategies: their purposes in lithium-ion battery analysis and improvement. Chin. Phys. B 25, 018212 (2016).

  • 51.

    Grazioli, D., Magri, M. & Salvadori, A. Computational modeling of Li-ion batteries. Comput. Mech. 58, 889–909 (2016).

    Article  Google Scholar 

  • 52.

    City, A., Website positioning, D. H. & Ceder, G. Computational understanding of Li-ion batteries. NPJ Comput. Mater. 2, 16002 (2016).

    Article  Google Scholar 

  • 53.

    Galvez-Aranda, D. E., Ponce, V. & Seminario, J. M. Molecular dynamics simulations of the primary cost of a Li-ion—Si-anode nanobattery. J. Mol. Mannequin. 23, 120 (2017).

    Article  Google Scholar 

  • 54.

    Balbuena, P. B. in Evaluate on Electrochemical Storage Supplies and Expertise. Vol. 1597, AIP Convention Proceedings (eds D. C. Meyer & T. Leisegang) 82–97 (American Institute of Physics, New York, 2014).

  • 55.

    Ramos-Sanchez, G. et al. Computational research of interfacial reactions at anode supplies: preliminary levels of the solid-electrolyte-interphase layer formation. J. Electrochem. En. Conv. Stor. 13, 031002 (2016).

    Article  Google Scholar 

  • 56.

    Martinez de la Hoz, J. M., Soto, F. A. & Balbuena, P. B. Impact of the electrolyte composition on SEI reactions at Si anodes of Li-ion batteries. J. Phys. Chem. C 119, 7060–7068 (2015).

    Article  Google Scholar 

  • 57.

    Camacho-Forero, L. E., Smith, T. W. & Balbuena, P. B. Results of excessive and low salt focus in electrolytes at lithium-metal anode surfaces. J. Phys. Chem. C 121, 182–194 (2017).

    Article  Google Scholar 

  • 58.

    Blint, R. J. Binding of ether and carbonyl oxygens to lithium ion. J. Electrochem. Soc. 142, 696–702 (1995).

    Article  Google Scholar 

  • 59.

    Aurbach, D., Levi, M. D., Levi, E. & Schechter, A. Failure and stabilization mechanisms of graphite electrodes. J. Phys. Chem. B 101, 2195–2206 (1997).

    Article  Google Scholar 

  • 60.

    Yu, J., Balbuena, P. B., Budzien, J. & Leung, Okay. Hybrid DFT functional-based static and molecular dynamics research of extra electron in liquid ethylene carbonate. J. Electrochem. Soc. 158, A400–A410 (2011).

    Article  Google Scholar 

  • 61.

    Xu, M. et al. Investigation and utility of lithium difluoro(oxalate)borate (LiDFOB) as additive to enhance the thermal stability of electrolyte for lithium-ion batteries. J. Energy Sources 196, 6794–6801 (2011).

    Article  Google Scholar 

  • 62.

    Leung, Okay. & Budzien, J. L. Ab initio molecular dynamics simulations of the preliminary levels of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. Phys. Chem. Chem. Phys. 12, 6583–6586 (2010).

    Article  Google Scholar 

  • 63.

    Bedrov, D., Smith, G. D. & van Duin, A. C. T. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation research utilizing the ReaxFF. J. Phys. Chem. A. 116, 2978–2985 (2012).

    Article  Google Scholar 

  • 64.

    Martinez de la Hoz, J. M., Leung, Okay. & Balbuena, P. B. Discount mechanisms of ethylene carbonate on Si anodes of lithium-ion batteries: results of diploma of lithiation and nature of uncovered floor. ACS Appl. Mater. Interfaces 5, 13457–13465 (2013).

  • 65.

    Leung, Okay. Two-electron discount of ethylene carbonate: a quantum chemistry re-examination of mechanisms. Chem. Phys. Lett. 568-569, 1–8 (2013).

    Article  Google Scholar 

  • 66.

    Leung, Okay. & Tenney, C. M. Towards first rules prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries. J. Phys. Chem. C. 117, 24224–24235 (2013).

    Article  Google Scholar 

  • 67.

    Okamoto, Y. Ab initio calculations of thermal decomposition mechanism of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 160, A404–A409 (2013).

    Article  Google Scholar 

  • 68.

    Leung, Okay. Predicting the voltage dependence of interfacial electrochemical processes at lithium-intercalated graphite edge planes. Phys. Chem. Chem. Phys. 17, 1637–1643 (2015).

    Article  Google Scholar 

  • 69.

    Islam, M. M. & van Duin, A. C. T. Reductive decomposition reactions of ethylene carbonate by specific electron switch from lithium: an eReaxFF molecular dynamics research. J. Phys. Chem. C. 120, 27128–27134 (2016).

    Article  Google Scholar 

  • 70.

    Hammer, N. I. et al. Dipole-bound anions of extremely polar molecules: ethylene carbonate and vinylene carbonate. J. Chem. Phys. 120, 685–690 (2004).

    Article  Google Scholar 

  • 71.

    Jin, Y. et al. Figuring out the structural foundation for the elevated stability of the stable electrolyte interphase shaped on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 139, 14992–15004 (2017).

    Article  Google Scholar 

  • 72.

    Onuki, M. et al. Identification of the supply of developed fuel in Li-ion batteries utilizing (13)C-labeled solvents. J. Electrochem. Soc. 155, A794–A797 (2008).

    Article  Google Scholar 

  • 73.

    Shkrob, I. A., Zhu, Y., Marin, T. W. & Abraham, D. Discount of carbonate electrolytes and the formation of solid-electrolyte interface (SEI) in lithium-ion batteries. 1. Spectroscopic observations of radical intermediates generated in one-electron discount of carbonates. J. Phys. Chem. C 117, 19255–19269 (2013).

    Article  Google Scholar 

  • 74.

    Tasaki, Okay. Solvent decompositions and bodily properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. J. Phys. Chem. B 109, 2920–2933 (2005).

    Article  Google Scholar 

  • 75.

    Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation research of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B. 113, 1763–1776 (2009).

    Article  Google Scholar 

  • 76.

    Borodin, O. Polarizable drive discipline improvement and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B. 113, 11463–11478 (2009).

    Article  Google Scholar 

  • 77.

    Website positioning, D. M. et al. Electrolyte solvation and ionic affiliation I. Acetonitrile-lithium salt mixtures: intermediate and extremely related salts. J. Electrochem. Soc. 159, A553–A565 (2012).

    Article  Google Scholar 

  • 78.

    Kim, S. P., van Duin, A. C. T. & Shenoy, V. B. Impact of electrolytes on the construction and evolution of the stable electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics research. J. Energy Sources 196, 8590–8597 (2011).

    Article  Google Scholar 

  • 79.

    Borodin, O., Olguin, M., Spear, C. E., Leiter, Okay. W. & Knap, J. In the direction of excessive throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26, 354003 (2015).

    Article  Google Scholar 

  • 80.

    Borodin, O. et al. Challenges with quantum chemistry-based screening of electrochemical stability of lithium battery electrolytes. ECS Trans. 69, 113–123 (2015).

    Article  Google Scholar 

  • 81.

    Campion, C. L., Li, W. T. & Lucht, B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 152, A2327–A2334 (2005).

    Article  Google Scholar 

  • 82.

    Aurbach, D., Moshkovich, M., Cohen, Y. & Schechter, A. The research of floor movie formation on noble-metal electrodes in alkyl carbonates/Li salt options, utilizing simultaneous in situ AFM, EQCM, FTIR, and EIS. Langmuir 15, 2947–2960 (1999).

    Article  Google Scholar 

  • 83.

    Leung, Okay. Digital construction modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries. J. Phys. Chem. C 117, 1539–1547 (2013).

    Article  Google Scholar 

  • 84.

    Wang, Y. X. & Balbuena, P. B. Theoretical research on cosolvation of Li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates. Int. J. Quantum Chem. 102, 724–733 (2005).

    Article  Google Scholar 

  • 85.

    Tasaki, Okay., Kanda, Okay., Nakamura, S. & Ue, M. Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes—density practical principle and molecular dynamics research. J. Electrochem. Soc. 150, A1628–A1636 (2003).

    Article  Google Scholar 

  • 86.

    Kim, H. et al. In situ formation of protecting coatings on sulfur cathodes in lithium batteries with LiFSI-based natural electrolytes. Adv. Power Mater. 5, 1401792 (2015).

    Article  Google Scholar 

  • 87.

    Suo, L. et al. Superior high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55, 7136–7141 (2016).

    Article  Google Scholar 

  • 88.

    Suo, L. et al. How solid-electrolyte interphase types in aqueous electrolytes. J. Am. Chem. Soc. 139, 18670–18680 (2017).

    Article  Google Scholar 

  • 89.

    Cresce, A. V. W., Borodin, O. & Xu, Okay. Correlating Li+ solvation sheath construction with interphasial chemistry on graphite. J. Phys. Chem. C 116, 26111–26117 (2012).

    Article  Google Scholar 

  • 90.

    Owejan, J. E., Owejan, J. P., DeCaluwe, S. C. & Dura, J. A. Stable electrolyte interphase in Li-ion batteries: evolving buildings measured in situ by neutron reflectometry. Chem. Mater. 24, 2133–2140 (2012).

    Article  Google Scholar 

  • 91.

    Vatamanu, J., Borodin, O. & Smith, G. D. Molecular dynamics simulation research of the construction of a blended carbonate/LiPF6 Electrolyte close to graphite floor as a perform of electrode potential. J. Phys. Chem. C 116, 1114–1121 (2012).

    Article  Google Scholar 

  • 92.

    Jorn, R., Kumar, R., Abraham, D. P. & Voth, G. A. Atomistic modeling of the electrode-electrolyte interface in Li-ion power storage techniques: electrolyte structuring. J. Phys. Chem. C 117, 3747–3761 (2013).

    Article  Google Scholar 

  • 93.

    Boyer, M. J., Vilciauskas, L. & Hwang, G. S. Construction and Li+ ion transport in a blended carbonate/LiPF6 electrolyte close to graphite electrode surfaces: a molecular dynamics research. Phys. Chem. Chem. Phys. 18, 27868–27876 (2016).

    Article  Google Scholar 

  • 94.

    Ponce, V., Galvez-Aranda, D. E. & Seminario, J. M. Evaluation of a Li-Ion Nanobattery with Graphite Anode Utilizing Molecular Dynamics Simulations. J. Phys. Chem. C. 121, 12959–12971 (2017).

    Article  Google Scholar 

  • 95.

    Vatamanu, J., Bedrov, D. & Borodin, O. On the applying of fixed electrode potential simulation methods in atomistic modelling of electrical double layers. Mol. Simula. 43, 838–849 (2017).

    Article  Google Scholar 

  • 96.

    Ganesh, P., Kent, P. R. C. & Jiang, D.-E. Stable-electrolyte interphase formation and electrolyte discount at Li-ion battery graphite anodes: insights from first-principles molecular dynamics. J. Phys. Chem. C. 116, 24476–24481 (2012).

    Article  Google Scholar 

  • 97.

    Ebadi, M., Brandell, D. & Araujo, C. M. Electrolyte decomposition on Li-metal surfaces from first-principles principle. J. Chem. Phys. 145, 204701 (2016).

    Article  Google Scholar 

  • 98.

    Ma, Y. & Balbuena, P. B. DFT research of discount mechanisms of ethylene carbonate and fluoroethylene carbonate on Li+-adsorbed Si clusters. J. Electrochem. Soc. 161, E3097–E3109 (2014).

    Article  Google Scholar 

  • 99.

    Moradabadi, A., Bakhtiari, M. & Kaghazchi, P. Impact of anode composition on stable electrolyte interphase formation. Electrochim. Acta 213, 8–13 (2016).

    Article  Google Scholar 

  • 100.

    Camacho-Forero, L. E., Smith, T. W., Bertolini, S. & Balbuena, P. B. Reactivity on the lithium–steel anode floor of lithium–sulfur batteries. J. Phys. Chem. C 119, 26828–26839 (2015).

    Article  Google Scholar 

  • 101.

    Liu, Z., Bertolini, S., Balbuena, P. B. & Mukherjee, P. P. Li2S movie formation on lithium anode floor of Li–S batteries. ACS Appl. Mater. Interfaces 8, 4700–4708 (2016).

    Article  Google Scholar 

  • 102.

    Nandasiri, M. I. et al. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries. Chem. Mater. 29, 4728–4737 (2017).

    Article  Google Scholar 

  • 103.

    Hankins, Okay., Soto, F. A. & Balbuena, P. B. Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters. J. Electrochem. Soc. 164, E3457–E3464 (2017).

    Article  Google Scholar 

  • 104.

    Leung, Okay. & Leenheer, A. How voltage drops are manifested by lithium ion configurations at interfaces and in skinny movies on battery electrodes. J. Phys. Chem. C 119, 10234–10246 (2015).

    Article  Google Scholar 

  • 105.

    Methekar, R. N., Northrop, P. W. C., Chen, Okay., Braatz, R. D. & Subramanian, V. R. Kinetic Monte Carlo simulation of floor heterogeneity in graphite anodes for lithium-ion batteries: passive layer formation. J. Electrochem. Soc. 158, A363–A370 (2011).

    Article  Google Scholar 

  • 106.

    Wang, Y. X. & Balbuena, P. B. Associations of lithium alkyl dicarbonates by way of O···Li···O interactions. J. Phys. Chem. A 106, 9582–9594 (2002).

    Article  Google Scholar 

  • 107.

    Ushirogata, Okay., Sodeyama, Okay., Futera, Z., Tateyama, Y. & Okuno, Y. Close to-shore aggregation mechanism of electrolyte decomposition merchandise to elucidate stable electrolyte interphase formation. J. Electrochem. Soc. 162, A2670–A2678 (2015).

    Article  Google Scholar 

  • 108.

    Takenaka, N., Suzuki, Y., Sakai, H. & Nagaoka, M. On electrolyte-dependent formation of stable electrolyte interphase movie in lithium-ion batteries: sturdy sensitivity to small structural distinction of electrolyte molecules. J. Phys. Chem. C 118, 10874–10882 (2014).

    Article  Google Scholar 

  • 109.

    Hao, F., Liu, Z., Balbuena, P. B. & Mukherjee, P. P. Mesoscale elucidation of stable electrolyte interphase layer formation in Li-ion battery anode. J. Phys. Chem. C 121, 26233–26240 (2017).

    Article  Google Scholar 

  • 110.

    Balbuena, P. B. & Wang, Y. Lithium-ion batteries: solid-electrolyte interphase. (World Scientific, Singapore, 2004).

  • 111.

    Wang, Y. X. & Balbuena, P. B. Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: density practical principle research. J. Phys. Chem. B 106, 4486–4495 (2002).

    Article  Google Scholar 

  • 112.

    Mukhopadhyay, A., Tokranov, A., Xiao, X. & Sheldon, B. W. Stress improvement as a result of floor processes in graphite electrodes for Li-ion batteries: a primary report. Electrochim. Acta 66, 28–37 (2012).

    Article  Google Scholar 

  • 113.

    Tasaki, Okay., Goldberg, A. & Winter, M. On the distinction in biking behaviors of lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes. Electrochim. Acta 56, 10424–10435 (2011).

    Article  Google Scholar 

  • 114.

    Tasaki, Okay., Goldberg, A., Liang, J.-J. & Winter, M. in Non-Aqueous Electrolytes for Lithium Batteries. Vol. 33, ECS Transactions (eds B. Lucht, W. A. Henderson, T. R. Jow, & M. Ue) 59–69 (The electrochemical Society, New Jersey, 2011).

  • 115.

    Lee, O. S. & Carignano, M. A. Exfoliation of electrolyte-intercalated graphene: molecular dynamics simulation research. J. Phys. Chem. C 119, 19415–19422 (2015).

    Article  Google Scholar 

  • 116.

    Guk, H., Kim, D., Choi, S.-H., Chung, D. H. & Han, S. S. Thermostable synthetic solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: molecular dynamics simulations. J. Electrochem. Soc. 163, A917–A922 (2016).

    Article  Google Scholar 

  • 117.

    Tasaki, Okay. Density practical principle research on structural and energetic traits of graphite intercalation compounds. J. Phys. Chem. C 118, 1443–1450 (2014).

    Article  Google Scholar 

  • 118.

    Bhatt, M. D. & O’Dwyer, C. The function of carbonate and sulfite components in propylene carbonate-based electrolytes on the formation of SEI layers at graphitic Li-ion battery anodes. J. Electrochem. Soc. 161, A1415–A1421 (2014).

    Article  Google Scholar 

  • 119.

    Ushirogata, Okay., Sodeyama, Okay., Okuno, Y. & Tateyama, Y. Additive impact on reductive decomposition and binding of carbonate-based solvent towards stable electrolyte interphase formation in lithium-ion battery. J. Am. Chem. Soc. 135, 11967–11974 (2013).

    Article  Google Scholar 

  • 120.

    Leung, Okay. et al. Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries. J. Electrochem. Soc. 161, A213–A221 (2014).

    Article  Google Scholar 

  • 121.

    Martinez de la Hoz, J. M. & Balbuena, P. B. Discount mechanisms of components on Si anodes of Li-ion batteries. Phys. Chem. Chem. Phys. 16, 17091–17098 (2014).

    Article  Google Scholar 

  • 122.

    McArthur, M. A., Trussler, S. & Dahn, J. R. In situ investigations of SEI layer progress on electrode supplies for lithium-ion batteries utilizing spectroscopic ellipsometry. J. Electrochem. Soc. 159, A198–A207 (2012).

    Article  Google Scholar 

  • 123.

    Yang, Z., Gewirth, A. A. & Trahey, L. Investigation of fluoroethylene carbonate results on Tin-based lithium-ion battery electrodes. ACS Appl. Mater. Interfaces 7, (6557–6566 (2015).

    Google Scholar 

  • 124.

    Xing, L., Li, W., Xu, M., Li, T. & Zhou, L. The reductive mechanism of ethylene sulfite as stable electrolyte interphase film-forming additive for lithium ion battery. J. Energy Sources 196, 7044–7047 (2011).

    Article  Google Scholar 

  • 125.

    Solar, Y. & Wang, Y. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating stable electrolyte interphase formation in lithium ion batteries. Phys. Chem. Chem. Phys. 19, 6861–6870 (2017).

    Article  Google Scholar 

  • 126.

    Wrodnigg, G. H., Besenhard, J. O. & Winter, M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J. Electrochem. Soc. 146, 470–472 (1999).

    Article  Google Scholar 

  • 127.

    Leggesse, E. G. & Jiang, J.-C. Theoretical research of the reductive decomposition of ethylene sulfite: a film-forming electrolyte additive in lithium ion batteries. J. Phys. Chem. A. 116, 11025–11033 (2012).

    Article  Google Scholar 

  • 128.

    Xu, M. Q. et al. Impact of butyl sultone on the Li-ion battery efficiency and interface of graphite electrode. Acta Phys. Chim. Sin. 22, 335–340 (2006).

    Article  Google Scholar 

  • 129.

    Chen, R. et al. Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. J. Energy Sources 172, 395–403 (2007).

    Article  Google Scholar 

  • 130.

    Xu, M. Q., Li, W. S., Zuo, X. X., Liu, J. S. & Xu, X. Efficiency enchancment of lithium ion battery utilizing PC as a solvent element and BS as an SEI forming additive. J. Energy Sources 174, 705–710 (2007).

    Article  Google Scholar 

  • 131.

    Xing, L. D., Wang, C. Y., Xu, M. Q., Li, W. S. & Cai, Z. P. Theoretical research on discount mechanism of 1,3-benzodioxol-2-one for the formation of stable electrolyte interface on anode of lithium ion battery. J. Energy Sources 189, 689–692 (2009).

    Article  Google Scholar 

  • 132.

    Self, J., Corridor, D. S., Madec, L. & Dahn, J. R. The function of prop-1-ene-1,3-sultone as an additive in lithium-ion cells. J. Energy Sources 298, 369–378 (2015).

    Article  Google Scholar 

  • 133.

    Leggesse, E. G. & Jiang, J.-C. Theoretical research of the reductive decomposition of 1,3-propane sultone: SEI forming additive in lithium-ion batteries. RSC Adv. 2, 5439–5446 (2012).

    Article  Google Scholar 

  • 134.

    Jung, H. M. et al. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. J. Mater. Chem. A 1, 11975–11981 (2013).

    Article  Google Scholar 

  • 135.

    Ding, Z., Li, X., Wei, T., Yin, Z. & Li, X. Improved compatibility of graphite anode for lithium ion battery utilizing sulfuric esters. Electrochim. Acta 196, 622–628 (2016).

    Article  Google Scholar 

  • 136.

    Wang, B. et al. Results of three,5-bis(trifluoromethyl)benzeneboronic acid as an additive on electrochemical efficiency of propylene carbonate-based electrolytes for lithium ion batteries. Electrochim. Acta 54, 816–820 (2008).

    Article  Google Scholar 

  • 137.

    Xu, M., Zhou, L., Xing, L., Li, W. & Lucht, B. L. Experimental and theoretical investigations on 4,5-dimethyl- 1,3 dioxol-2-one as stable electrolyte interface forming additive for lithium-ion batteries. Electrochim. Acta 55, 6743–6748 (2010).

    Article  Google Scholar 

  • 138.

    Xu, M. et al. Experimental and theoretical investigations of dimethylacetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries. J. Phys. Chem. C 115, 6085–6094 (2011).

    Article  Google Scholar 

  • 139.

    Corridor, D. S. et al. Floor-electrolyte interphase formation in lithium-ion cells containing pyridine adduct components. J. Electrochem. Soc. 163, A773–A780 (2016).

    Article  Google Scholar 

  • 140.

    Forestier, C. et al. Facile discount of pseudo-carbonates: selling stable electrolyte interphases with dicyanoketene alkylene acetals in lithium-ion batteries. J. Energy Sources 303, 1–9 (2016).

    Article  Google Scholar 

  • 141.

    Forestier, C. et al. Comparative investigation of stable electrolyte interphases created by the electrolyte components vinyl ethylene carbonate and dicyano ketene vinyl ethylene acetal. J. Energy Sources 345, 212–220 (2017).

    Article  Google Scholar 

  • 142.

    Lu, Z., Yang, L. & Guo, Y. Thermal conduct and decomposition kinetics of six electrolyte salts by thermal evaluation. J. Energy Sources 156, 555–559 (2006).

    Article  Google Scholar 

  • 143.

    Tasaki, Okay., Kanda, Okay., Kobayashi, T., Nakamura, S. & Ue, M. Theoretical research on the reductive decompositions of solvents and components for lithium-ion batteries close to lithium anodes. J. Electrochem. Soc. 153, A2192–A2197 (2006).

    Article  Google Scholar 

  • 144.

    Ue, M., Murakami, A. & Nakamura, S. Anodic stability of a number of anions examined by ab initio molecular orbital and density practical theories. J. Electrochem. Soc. 149, A1572–A1577 (2002).

    Article  Google Scholar 

  • 145.

    Han, Y.-Okay., Jung, J., Yu, S. & Lee, H. Understanding the traits of high-voltage components in Li-ion batteries: Solvent results. J. Energy Sources 187, 581–585 (2009).

    Article  Google Scholar 

  • 146.

    Halls, M. D. & Tasaki, Okay. Excessive-throughput quantum chemistry and digital screening for lithium ion battery electrolyte components. J. Energy Sources 195, 1472–1478 (2010).

    Article  Google Scholar 

  • 147.

    Park, M. H., Lee, Y. S., Lee, H. & Han, Y.-Okay. Low Li+ binding affinity: an vital attribute for components to kind stable electrolyte interphases in Li-ion batteries. J. Energy Sources 196, 5109–5114 (2011).

    Article  Google Scholar 

  • 148.

    Jankowski, P., Wieczorek, W. & Johansson, P. SEI-forming electrolyte components for lithium-ion batteries: improvement and benchmarking of computational approaches. J. Mol. Mannequin. 23, 6–6 (2017).

    Article  Google Scholar 

  • 149.

    Husch, T. & Korth, M. Easy methods to estimate solid-electrolyte-interphase options when screening electrolyte supplies. Phys. Chem. Chem. Phys. 17, 22799–22808 (2015).

    Article  Google Scholar 

  • 150.

    Knap, J., Spear, C., Leiter, Okay., Becker, R. & Powell, D. A computational framework for scale‐bridging in multi‐scale simulations. Int. J. Numer. Meth. Eng. 108, 1649–1666 (2016).

    Article  Google Scholar 

  • 151.

    Jorn, R. & Kumar, R. Breaking the scales: electrolyte modeling in metal-ion batteries. Electrochem. Soc. Interface 26, 55–59 (2017).

    Article  Google Scholar 

  • 152.

    Qu, X. H. et al. The electrolyte genome undertaking: an enormous information strategy in battery supplies discovery. Comput. Mater. Sci. 103, 56–67 (2015).

    Article  Google Scholar 

  • 153.

    Wang, Y., Zhang, W., Chen, L., Shi, S. & Liu, J. Quantitative description on structure-property relationships of Li-ion battery supplies for high-throughput computations. Sci. Technol. Adv. Mat. 18, 134–146 (2017).

    Article  Google Scholar 

  • 154.

    George, S. M. Atomic layer deposition: an outline. Chem. Rev. 110, 111–131 (2010).

    Article  Google Scholar 

  • 155.

    Riley, L. A., Cavanagh, A. S., George, S. M., Lee, S.-H. & Dillon, A. C. Improved mechanical integrity of ALD-coated composite electrodes for Li-ion batteries. Electrochem. Stable State Lett. 14, A29–A31 (2011).

    Article  Google Scholar 

  • 156.

    Lin, Y.-X. et al. Connecting the irreversible capability loss in Li-ion batteries with the digital insulating properties of stable electrolyte interphase (SEI) elements. J. Energy Sources 309, 221–230 (2016).

    Article  Google Scholar 

  • 157.

    Leung, Okay. et al. Utilizing atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental research. J. Am. Chem. Soc. 133, 14741–14754 (2011).

    Article  Google Scholar 

  • 158.

    Soto, F. A., Ma, Y., Martinez de la Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and progress mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).

    Article  Google Scholar 

  • 159.

    Liu, Z. et al. Interfacial research on stable electrolyte interphase at Li steel anode: implication for Li dendrite progress. J. Electrochem. Soc. 163, A592–A598 (2016).

    Article  Google Scholar 

  • 160.

    Leung, Okay. & Jungjohann, Okay. L. Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces. J. Phys. Chem. C 121, 20188–20196 (2017).

    Article  Google Scholar 

  • 161.

    Benitez, L., Cristancho, D., Seminario, J. M., Martinez de la Hoz, J. M. & Balbuena, P. B. Electron switch by way of solid-electrolyte-interphase layers shaped on Si anodes of Li-ion batteries. Electrochim. Acta 140, 250–257 (2014).

    Article  Google Scholar 

  • 162.

    Benitez, L. & Seminario, J. M. Electron transport and electrolyte discount within the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes. J. Phys. Chem. C 120, 17978–17988 (2016).

    Article  Google Scholar 

  • 163.

    Li, D. et al. Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries. J. Electrochem. Soc. 162, A858–A869 (2015).

    Article  Google Scholar 

  • 164.

    Joho, F. et al. Relation between floor properties, pore construction and first-cycle cost lack of graphite as unfavorable electrode in lithium-ion batteries. J. Energy Sources 97, 78–82 (2001).

    Article  Google Scholar 

  • 165.

    Feng, T. et al. Low-cost Al2O3 coating layer as a preformed SEI on pure graphite powder to enhance coulombic effectivity and high-rate biking stability of lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 6512–6519 (2016).

    Article  Google Scholar 

  • 166.

    Ramos-Sanchez, G., Chen, G., Harutyunyan, A. R. & Balbuena, P. B. Theoretical and experimental investigations of the Li storage capability in single-walled carbon nanotube bundles. RSC Adv. 6, 27260–27266 (2016).

    Article  Google Scholar 

  • 167.

    Nie, M. et al. Lithium ion battery graphite stable electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C. 117, 1257–1267 (2013).

    Article  Google Scholar 

  • 168.

    Garcia-Lastra, J. M., Myrdal, J. S. G., Christensen, R., Thygesen, Okay. S. & Vegge, T. DFT plus U research of polaronic conduction in Li2O2 and Li2CO3: implications for Li-Air batteries. J. Phys. Chem. C. 117, 5568–5577 (2013).

    Article  Google Scholar 

  • 169.

    Shi, S., Qi, Y., Li, H. & Hector, L. G. Jr. Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the stable electrolyte interphase in Li-Ion batteries. J. Phys. Chem. C. 117, 8579–8593 (2013).

    Article  Google Scholar 

  • 170.

    Bumm, L. A., Arnold, J. J., Dunbar, T. D., Allara, D. L. & Weiss, P. S. Electron switch by way of natural molecules. J. Phys. Chem. B 103, 8122–8127 (1999).

    Article  Google Scholar 

  • 171.

    Yamada, Y., Iriyama, Y., Abe, T. & Ogumi, Z. Kinetics of lithium ion switch on the interface between graphite and liquid electrolytes: results of solvent and floor movie. Langmuir 25, 12766–12770 (2009).

    Article  Google Scholar 

  • 172.

    Xu, Okay., von Cresce, A. & Lee, U. Differentiating contributions to “ion switch” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26, 11538–11543 (2010).

    Article  Google Scholar 

  • 173.

    Chen, Y. C., Ouyang, C. Y., Music, L. J. & Solar, Z. L. Electrical and lithium ion dynamics in three fundamental elements of stable electrolyte interphase from density practical principle research. J. Phys. Chem. C 115, 7044–7049 (2011).

    Article  Google Scholar 

  • 174.

    Iddir, H. & Curtiss, L. A. Li ion diffusion mechanisms in bulk monoclinic Li2CO3 crystals from density practical research. J. Phys. Chem. C 114, 20903–20906 (2010).

    Article  Google Scholar 

  • 175.

    Borodin, O., Smith, G. D. & Fan, P. Molecular dynamics simulations of lithium alkyl carbonates. J. Phys. Chem. B 110, 22773–22779 (2006).

    Article  Google Scholar 

  • 176.

    Borodin, O., Zhuang, G. R. V., Ross, P. N. & Xu, Okay. Molecular dynamics simulations and experimental research of lithium ion transport in dilithium ethylene dicarbonate. J. Phys. Chem. C. 117, 7433–7444 (2013).

    Article  Google Scholar 

  • 177.

    Bedrov, D., Borodin, O. & Hooper, J. B. Li+ transport and mechanical properties of mannequin stable electrolyte interphases (SEI): perception from atomistic molecular dynamics simulations. J. Phys. Chem. C. 121, 16098–16109 (2017).

    Article  Google Scholar 

  • 178.

    Borodin, O. in Electrolytes for Lithium and Lithium-Ion Batteries (eds T. R. Jow, Okay. Xu, O. Borodin, & M. Ue) 371-401 (Springer, New York, 2014).

  • 179.

    Pan, J., Cheng, Y.-T. & Qi, Y. Basic methodology to foretell voltage-dependent ionic conduction in a stable electrolyte coating on electrodes. Phys. Rev. B 91, 134116 (2015).

    Article  Google Scholar 

  • 180.

    Benitez, L. & Seminario, J. M. Ion diffusivity by way of the stable electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc. 164, E3159–E3170 (2017).

    Article  Google Scholar 

  • 181.

    Yildirim, H., Kinaci, A., Chan, M. Okay. Y. & Greeley, J. P. First-principles evaluation of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015).

    Article  Google Scholar 

  • 182.

    Soto, F. A. et al. Tuning the Stable Electrolyte Interphase for Selective Li- and Na-Ion Storage in Exhausting Carbon. Adv. Mater. 29, 1606860 (2017).

  • 183.

    Fan, L., Zhuang, H. L., Gao, L., Lu, Y. & Archer, L. A. Regulating Li deposition at synthetic stable electrolyte interphases. J. Mater. Chem. A 5, 3483–3492 (2017).

    Article  Google Scholar 

  • 184.

    Liang, C. C. Conduction traits of the lithium iodide-aluminum oxide stable electrolytes. J. Electrochem. Soc. 120, 1289–1292 (1973).

    Article  Google Scholar 

  • 185.

    Pan, J., Zhang, Q., Xiao, X., Cheng, Y.-T. & Qi, Y. Design of nanostructured heterogeneous stable ionic coatings by way of a multiscale defect mannequin. ACS Appl. Mater. Interfaces 8, 5687–5693 (2016).

    Article  Google Scholar 

  • 186.

    Borodin, O. & Bedrov, D. Interfacial construction and dynamics of the lithium alkyl dicarbonate SEI elements involved with the lithium battery electrolyte. J. Phys. Chem. C 118, 18362–18371 (2014).

    Article  Google Scholar 

  • 187.

    Shang, S.-L. et al. Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density practical principle. Acta Mater. 60, 5204–5216 (2012).

    Article  Google Scholar 

  • 188.

    Shin, H., Park, J., Han, S., Sastry, A. M. & Lu, W. Element-/structure-dependent elasticity of stable electrolyte interphase layer in Li-ion batteries: experimental and computational research. J. Energy Sources 277, 169–179 (2015).

    Article  Google Scholar 

  • 189.

    Zvereva, E., Caliste, D. & Pochet, P. Interface identification of the stable electrolyte interphase on graphite. Carbon N.Y. 111, 789–795 (2017).

    Article  Google Scholar 

  • 190.

    Soto, F. A. & Balbuena, P. B. Elucidating oligomer-surface and oligomer-oligomer interactions at a lithiated silicon floor. Electrochim. Acta 220, 312–321 (2016).

    Article  Google Scholar 

  • 191.

    Verbrugge, M. W., Qi, Y., Baker, D. R. & Cheng, Y.-T. Diffusion-Induced Stress inside Core–Shell Buildings and Implications for Strong Electrode Design and Supplies Choice (Wiley-VCH Verlag, Weinheim, 2015).

  • 192.

    Tasaki, Okay. & Harris, S. J. Computational research on the solubility of lithium salts shaped on lithium ion battery unfavorable electrode in natural solvents. J. Phys. Chem. C. 114, 8076–8083 (2010).

    Article  Google Scholar 

  • 193.

    Leung, Okay., Soto, F., Hankins, Okay., Balbuena, P. B. & Harrison, Okay. L. Stability of stable electrolyte interphase elements on lithium steel and reactive anode materials surfaces. J. Phys. Chem. C 120, 6302–6313 (2016).

    Article  Google Scholar 

  • 194.

    Xu, Okay. et al. Syntheses and characterization of lithium alkyl mono- and dicarbonates as elements of floor movies in Li-lon batteries. J. Phys. Chem. B 110, 7708–7719 (2006).

    Article  Google Scholar 

  • 195.

    Okuno, Y., Ushirogata, Okay., Sodeyama, Okay. & Tateyama, Y. Decomposition of the fluoroethylene carbonate additive and the glue impact of lithium fluoride merchandise for the stable electrolyte interphase: an ab initio research. Phys. Chem. Chem. Phys. 18, 8643–8653 (2016).

    Article  Google Scholar 

  • 196.

    Zhang, Q. & Kaghazchi, P. Dependence of ion transport on the electronegativity of the constituting atoms in ionic crystals. Chemphyschem 18, 965–969 (2017).

    Article  Google Scholar 

  • 197.

    Leung, Okay. First-principles modeling of Mn(II) migration above and dissolution from LixMn2O4 (001) surfaces. Chem. Mater. 29, 2550–2562 (2017).

    Article  Google Scholar 

  • 198.

    Aurbach, D., Ein‐Ely, Y. & Zaban, A. The floor chemistry of lithium electrodes in alkyl carbonate options. J. Electrochem. Soc. 141, L1–L3 (1994).

    Article  Google Scholar 

  • 199.

    Herstedt, M., Abraham, D. P., Kerr, J. B. & Edström, Okay. X-ray photoelectron spectroscopy of unfavorable electrodes from high-power lithium-ion cells exhibiting numerous ranges of energy fade. Electrochim. Acta 49, 5097–5110 (2004).

    Article  Google Scholar 

  • 200.

    Newman, J. S. & Tobias, C. W. Theoretical evaluation of present distribution in porous electrodes. J. Electrochem. Soc. 109, 1183–1191 (1962).

    Article  Google Scholar 

  • 201.

    Newman, J., Thomas, Okay. E., Hafezi, H. & Wheeler, D. R. Modeling of lithium-ion batteries. J. Energy Sources 119, 838–843 (2003).

    Article  Google Scholar 

  • 202.

    Broussely, M. et al. Getting old mechanism in Li ion cells and calendar life predictions. J. Energy Sources 97-98, 13–21 (2001).

    Article  Google Scholar 

  • 203.

    Christensen, J. & Newman, J. A mathematical mannequin for the lithium-ion unfavorable electrode stable electrolyte interphase. J. Electrochem. Soc. 151, A1977–A1988 (2004).

    Article  Google Scholar 

  • 204.

    Colclasure, A. M., Smith, Okay. A. & Kee, R. J. Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) movies in Li-ion batteries. Electrochim. Acta 58, 33–43 (2011).

    Article  Google Scholar 

  • 205.

    Ploehn, H. J., Ramadass, P. & White, R. E. Solvent diffusion mannequin for getting old of lithium-ion battery cells. J. Electrochem. Soc. 151, A456–A462 (2004).

    Article  Google Scholar 

  • 206.

    Liu, L., Park, J., Lin, X., Sastry, A. M. & Lu, W. A thermal-electrochemical mannequin that offers spatial-dependent progress of stable electrolyte interphase in a Li-ion battery. J. Energy Sources 268, 482–490 (2014).

    Article  Google Scholar 

  • 207.

    Pinson, M. B. & Bazant, M. Z. Concept of SEI formation in rechargeable batteries: capability fade, accelerated getting old and lifelong prediction. J. Electrochem. Soc. 160, A243–A250 (2013).

    Article  Google Scholar 

  • 208.

    Tang, M., Lu, S. & Newman, J. Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon. J. Electrochem. Soc. 159, A1775–A1785 (2012).

    Article  Google Scholar 

  • 209.

    Guan, P., Liu, L. & Lin, X. Simulation and experiment on stable electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion. J. Electrochem. Soc. 162, A1798–A1808 (2015).

    Article  Google Scholar 

  • 210.

    Single, F., Horstmann, B. & Latz, A. Dynamics and morphology of stable electrolyte interphase (SEI). Phys. Chem. Chem. Phys. 18, 17810–17814 (2016).

    Article  Google Scholar 

  • 211.

    Single, F., Horstmann, B. & Latz, A. Revealing SEI morphology: in-depth evaluation of a modeling strategy. J. Electrochem. Soc. 164, E3132–E3145 (2017).

    Article  Google Scholar 

  • 212.

    Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical power storage for transportation-approaching the bounds of, and going past, lithium-ion batteries. Power Environ. Sci. 5, 7854–7863 (2012).

    Article  Google Scholar 

  • 213.

    Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Supplies design and discovery with high-throughput density practical principle: the open quantum supplies database (OQMD). JOM 65, 1501–1509 (2013).

    Article  Google Scholar 

  • 214.

    Aykol, M. et al. Excessive-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).

    Article  Google Scholar 

  • 215.

    Koch, S. L., Morgan, B. J., Passerini, S. & Teobaldi, G. Density practical principle screening of gas-treatment methods for stabilization of excessive energy-density lithium steel anodes. J. Energy Sources 296, 150–161 (2015).

    Article  Google Scholar 

  • 216.

    Y, Z., X, H. & Y, M. Methods based mostly on nitride supplies chemistry to stabilize Li steel anode. Adv. Sci. 4, 1600517 (2017).

    Article  Google Scholar 

  • 217.

    Boukamp, B. A. & Huggins, R. A. Quick ionic conductivity in lithium nitride. Mater. Res. Bull. 13, 23–32 (1978).

    Article  Google Scholar 

  • 218.

    Shi, L., Xu, A. & Zhao, T. First-principles investigations of the working mechanism of 2D h-BN as an Interfacial layer for the anode of lithium steel batteries. ACS Appl. Mater. Interfaces 9, (1987–1994 (2017).

    Google Scholar 

  • 219.

    Ma, Y. et al. Construction and reactivity of alucone-coated movies on Si and LixSiy surfaces. ACS Appl. Mater. Interfaces 7, 11948–11955 (2015).

    Article  Google Scholar 

  • 220.

    Jung, Y. S. et al. Ultrathin direct atomic layer deposition on composite electrodes for extremely sturdy and secure Li-ion batteries. Adv. Mater. 22, 2172–2176 (2010).

    Article  Google Scholar 

  • 221.

    Kozen, A. C. et al. Subsequent-generation lithium steel anode engineering through atomic layer deposition. Acs Nano 9, 5884–5892 (2015).

    Article  Google Scholar 

  • 222.

    Xiao, X. C., Lu, P. & Ahn, D. Ultrathin multifunctional oxide coatings for lithium ion batteries. Adv. Mater. 23, 3911–3915 (2011).

    Article  Google Scholar 

  • 223.

    Katiyar, P., Jin, C. & Narayan, R. J. Electrical properties of amorphous aluminum oxide skinny movies. Acta Mater. 53, 2617–2622 (2005).

    Article  Google Scholar 

  • 224.

    Piper, D. M. et al. Reversible high-capacity Si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition. Adv. Mater. 26, 1596–1601 (2014).

    Article  Google Scholar 

  • 225.

    Kim, S.-Y. & Qi, Y. Property evolution of Al2O3 coated and uncoated Si electrodes: a primary rules investigation. J. Electrochem. Soc. 161, F3137–F3143 (2014).

    Article  Google Scholar 

  • 226.

    Kim, S.-Y. et al. Self-generated focus and modulus gradient coating design to guard Si nano-wire electrodes throughout lithiation. Phys. Chem. Chem. Phys. 18, 3706–3715 (2016).

    Article  Google Scholar 

  • 227.

    Gomez-Ballesteros, J. L. & Balbuena, P. B. Discount of electrolyte elements on a coated Si anode of lithium-ion batteries. J. Phys. Chem. Lett. 8, 3404–3408 (2017).

    Article  Google Scholar 

  • 228.

    Zhang, L. Q. et al. Controlling the lithiation-induced pressure and charging price in nanowire electrodes by coating. ACS Nano 5, 4800–4809 (2011).

    Article  Google Scholar 

  • 229.

    Zhao, Okay., Pharr, M., Hartle, L., Vlassak, J. J. & Suo, Z. Fracture and debonding in lithium-ion batteries with electrodes of hole core–shell nanostructures. J. Energy Sources 218, 6–14 (2012).

    Article  Google Scholar 

  • 230.

    Stournara, M. E., Qi, Y. & Shenoy, V. B. From ab initio calculations to multiscale design of Si/C core–shell particles for Li-ion anodes. Nano. Lett. 14, 2140–2149 (2014).

    Article  Google Scholar 

  • 231.

    Qi, Y., Hector, L. G. Jr., James, C. & Kim, Okay. J. Lithium focus dependent elastic properties of battery electrode supplies from first rules calculations. J. Electrochem. Soc. 161, F3010–F3018 (2014).

    Article  Google Scholar 

  • 232.

    Perez-Beltran, S., Ramirez-Caballero, G. E. & Balbuena, P. B. First-principles calculations of lithiation of a hydroxylated floor of amorphous silicon dioxide. J. Phys. Chem. C 119, 16424–16431 (2015).

    Article  Google Scholar 

  • 233.

    Heine, J. et al. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based mostly electrolytes for utility in lithium ion and lithium steel batteries. J. Electrochem. Soc. 162, A1094–A1101 (2015).

    Article  Google Scholar 

  • 234.

    Huang, J., Fan, L.-Z., Yu, B., Xing, T. & Qiu, W. Density practical principle research on the B-containing lithium salts. Ionics 16, 509–513 (2010).

    Article  Google Scholar 

  • 235.

    Zhang, X. R., Kostecki, R., Richardson, T. J., Pugh, J. Okay. & Ross, P. N. Electrochemical and infrared research of the discount of natural carbonates. J. Electrochem. Soc. 148, A1341–A1345 (2001).

    Article  Google Scholar 

  • 236.

    Wang, Y. X., Nakamura, S., Tasaki, Okay. & Balbuena, P. B. Theoretical research to grasp floor chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its function as an electrolyte additive? J. Am. Chem. Soc. 124, 4408–4421 (2002).

    Article  Google Scholar 

  • 237.

    Bhatt, M. D. & O’Dwyer, C. Stable electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as components. Chem. Phys. Lett. 618, 208–213 (2015).

    Article  Google Scholar 

  • 238.

    Profatilova, I. A., Kim, S.-S. & Choi, N.-S. Enhanced thermal properties of the stable electrolyte interphase shaped on graphite in an electrolyte with fluoroethylene carbonate. Electrochim. Acta 54, 4445–4450 (2009).

    Article  Google Scholar 

  • 239.

    Vollmer, J. M., Curtiss, L. A., Vissers, D. R. & Amine, Okay. Discount mechanisms of ethylene, propylene, and vinylethylene carbonates—a quantum chemical research. J. Electrochem. Soc. 151, A178–A183 (2004).

    Article  Google Scholar 

  • 240.

    Yu, T. et al. Impact of sulfolane on the morphology and chemical composition of the stable electrolyte interphase layer in lithium bis(oxalato) borate-based electrolyte. Surf. Interface Anal. 46, 48–55 (2014).

    Article  Google Scholar 

  • 241.

    Nie, M., Xia, J. & Dahn, J. R. Growth of pyridine-boron trifluoride electrolyte components for lithium-ion batteries. J. Electrochem. Soc. 162, A1186–A1195 (2015).

    Article  Google Scholar 

  • 242.

    Kaymaksiz, S. et al. Electrochemical stability of lithium salicylato-borates as electrolyte components in Li-ion batteries. J. Energy Sources 239, 659–669 (2013).

    Article  Google Scholar 

  • 243.

    Panitz, J.-C., Wietelmann, U., Wachtler, M., Ströbele, S. & Wohlfahrt-Mehrens, M. Movie formation in LiBOB-containing electrolytes. J. Energy Sources 153, 396–401 (2006).

    Article  Google Scholar 

  • 244.

    Zhang, L. et al. Molecular engineering towards stabilized interface: an electrolyte additive for high-performance Li-ion battery. J. Electrochem. Soc. 161, A2262–A2267 (2014).

    Article  Google Scholar 

  • Source