Sequential deposition as a route to high-performance perovskite-sensitized solar cells

  • 1

    Kojima, A., Teshima, Okay., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    CAS  Article  Google Scholar 

  • 2

    Hagfeldt, A., Boschloo, G., Solar, L., Kloo, L. & Pettersson, H. Dye-sensitized photo voltaic cells. Chem. Rev. 110, 6595–6663 (2010)

    CAS  Google Scholar 

  • 3

    Im, J.-H. et al. 6.5% environment friendly perovskite quantum-dot-sensitized photo voltaic cell. Nanoscale 3, 4088–4093 (2011)

    ADS  CAS  Article  Google Scholar 

  • 4

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron skinny movie mesoscopic photo voltaic cell with effectivity exceeding 9%. Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  • 5

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Environment friendly hybrid photo voltaic cells primarily based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    ADS  CAS  Article  Google Scholar 

  • 6

    Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction photo voltaic cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)

    CAS  Article  Google Scholar 

  • 7

    Im, J.-H., Chung, J., Kim, S.-J. & Park, N.-G. Synthesis, construction, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 . Nanoscale Res. Lett. 7, 353 (2012)

    ADS  Article  Google Scholar 

  • 8

    Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. Excessive open-circuit voltage photo voltaic cells primarily based on organic-inorganic lead bromide perovskite. Phys. Chem. Lett. 4, 897–902 (2013)

    CAS  Article  Google Scholar 

  • 9

    Crossland, E. J. W. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic gadget efficiency. Nature 495, 215–219 (2013)

    ADS  CAS  Article  Google Scholar 

  • 10

    Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical administration for colourful, environment friendly, and secure inorganic−natural hybrid nanostructured photo voltaic cells. Nano Lett. 13, 1764–1769 (2013)

    ADS  CAS  Article  Google Scholar 

  • 11

    Cai, B., Xing, Y., Yang, Z., Zhang, W.-H. & Qiu, J. Excessive efficiency hybrid photo voltaic cells sensitized by organolead halide perovskites. Vitality Environ. Sci. 6, 1480–1485 (2013)

    CAS  Article  Google Scholar 

  • 12

    Qui, J. et al. All-solid-state hybrid photo voltaic cells primarily based on a brand new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013)

    ADS  Article  Google Scholar 

  • 13

    Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite photo voltaic cells. Vitality Environ. Sci. 6, 1739–1743 (2013)

    CAS  Article  Google Scholar 

  • 14

    Bi, D., Yang, L., Boschloo, G., Hagfeldt, A. & Johansson, E. M. J. Impact of various gap transport supplies on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic photo voltaic cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013)

    CAS  Article  Google Scholar 

  • 15

    Heo, J. H. et al. Environment friendly inorganic–natural hybrid heterojunction photo voltaic cells containing perovskite compound and polymeric gap conductors. Nature Photon. 7, 486–492 (2013)

    ADS  CAS  Article  Google Scholar 

  • 16

    Beckmann, A. A overview of polytypism in lead iodide. Cryst. Res. Technol. 45, 455–460 (2010)

    CAS  Article  Google Scholar 

  • 17

    Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized photo voltaic cell functions. J. Mater. Chem. A 1, 5628–5641 (2013)

    CAS  Article  Google Scholar 

  • 18

    Liang, Okay., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic-inorganic perovskite skinny movies ready utilizing a flexible two-step dipping method. Chem. Mater. 10, 403–411 (1998)

    CAS  Article  Google Scholar 

  • 19

    Beberwyck, B. J. & Alivisatos, A. P. Ion change synthesis of III–V nanocrystals. J. Am. Chem. Soc. 134, 19977–19980 (2012)

    CAS  Article  Google Scholar 

  • 20

    Luther, J. M., Zheng, H., Sadtler, B. & Alivisatos, A. P. Synthesis of PbS nanorods and different ionic nanocrystals of advanced morphology by sequential cation change reactions. J. Am. Chem. Soc. 131, 16851–16857 (2009)

    CAS  Article  Google Scholar 

  • 21

    Li, H. et al. Sequential cation change in nanocrystals: preservation of crystal part and formation of metastable phases. Nano Lett. 11, 4964–4970 (2011)

    ADS  CAS  Article  Google Scholar 

  • 22

    Gurina, G. I. & Savchenko, Okay. V. Intercalation and formation of complexes within the system of lead(II) iodide–ammonia. J. Strong State Chem. 177, 909–915 (2004)

    ADS  CAS  Article  Google Scholar 

  • 23

    Preda, N., Mihut, L., Baibarac, M., Baltog, I. & Lefrant, S. A particular signature within the Raman and photoluminescence spectra of intercalated PbI2 . J. Phys. Condens. Matter 18, 8899–8912 (2006)

    ADS  CAS  Article  Google Scholar 

  • 24

    Warren, R. F. & Liang, W. Y. Raman spectroscopy of latest lead iodide intercalation compounds. J. Phys. Condens. Matter 5, 6407–6418 (1993)

    ADS  CAS  Article  Google Scholar 

  • 25

    Burschka, J. et al. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for natural semiconductors and its utility in extremely environment friendly solid-state dye-sensitized photo voltaic cells. J. Am. Chem. Soc. 133, 18042–18045 (2011)

    CAS  Article  Google Scholar 

  • Source