GRAPHENE

Silicon/2D-material photodetectors: from near-infrared to mid-infrared


  • 1.

    Ferrari, A. C. et al. Science and know-how roadmap for graphene, associated two-dimensional crystals, and hybrid techniques. Nanoscale 7, 4598–4810 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Liu, J. et al. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020).


    Google Scholar
     

  • 3.

    Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor supplies. npj 2D Mater. Appl. 4, 29 (2020).

    Article 

    Google Scholar
     

  • 4.

    Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the hole to bridge. Nat. Commun. 11, 3385 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Koppens, F. H. L. et al. Photodetectors based mostly on graphene, different two-dimensional supplies and hybrid techniques. Nat. Nanotechnol. 9, 780–793 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Lengthy, M. S. et al. Progress, challenges, and alternatives for 2D materials based mostly photodetectors. Adv. Funct. Mater. 29, 1803807 (2019).

    Article 

    Google Scholar
     

  • 7.

    Chen, X. Q. et al. Graphene hybrid buildings for built-in and versatile optoelectronics. Adv. Mater. 32, 1902039 (2019).

    Article 

    Google Scholar
     

  • 8.

    Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Akinwande, D. et al. Graphene and two-dimensional supplies for silicon know-how. Nature 573, 507–518 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Li, J. et al. Hybrid silicon photonic units with two-dimensional supplies. Nanophotonics 9, 2295–2314 (2020).

    Article 

    Google Scholar
     

  • 11.

    Cao, G. Q. et al. Multicolor broadband and quick photodetector based mostly on InGaAs–Insulator–graphene hybrid heterostructure. Adv. Electron. Mater. 6, 1901007 (2020).

    Article 

    Google Scholar
     

  • 12.

    Deng, S. Ok. et al. Pressure engineering in two-dimensional nanomaterials past graphene. Nano At this time 22, 14–35 (2018).

    Article 

    Google Scholar
     

  • 13.

    Lukman, S. et al. Excessive oscillator power interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Rahim, A. et al. Open-access silicon photonics: present standing and rising initiatives. Proc. IEEE 106, 2313–2330 (2018).

    Article 

    Google Scholar
     

  • 15.

    Bogaerts, W. & Chrostowski, L. Silicon photonics circuit design: strategies, instruments and challenges. Laser Photonics Rev. 12, 1700237 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Soref, R. Group IV photonics: enabling 2 µm communications. Nat. Photonics 9, 358–359 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Solar, J. et al. Giant-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Lavchiev, V. M. & Jakoby, B. Photonics within the mid-infrared: challenges in single-chip integration and absorption sensing. IEEE J. Sel. Prime. Quantum Electron. 23, 8200612 (2017).

    Article 

    Google Scholar
     

  • 19.

    Shen, Y. C. et al. Deep studying with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Wang, J. W. et al. Built-in photonic quantum applied sciences. Nat. Photonics 14, 273–284 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Rieke, G. H. Detection of Gentle: From the Ultraviolet to the Submillimeter. 2nd edn. (Cambridge College Press, Cambridge, 2003).


    Google Scholar
     

  • 22.

    Huang, Z. H. et al. Microstructured silicon photodetector. Appl. Phys. Lett. 89, 033506 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Chen, H. T. et al. 100-Gbps RZ information reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Lightwave Technol. 35, 722–726 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Roelkens, G. et al. III-V-on-silicon photonic units for optical communication and sensing. Photonics 2, 969–1004 (2015).

    Article 

    Google Scholar
     

  • 25.

    Capper, P. & Garland, J. W. Mercury Cadmium Telluride: Development, Properties and Functions. (Wiley, Hoboken, 2011).


    Google Scholar
     

  • 26.

    Thomson, D. et al. Roadmap on silicon photonics. J. Decide. 18, 073003 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Liu, Y. et al. Two-dimensional transistors past graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

    Article 

    Google Scholar
     

  • 28.

    Xiong, Z. & Tang, J. Y. Two-dimensional supplies and hybrid techniques for photodetection. in Synthesis, Modeling, and Characterization of 2D Supplies, and Their Heterostructures. (eds. Yang, E. H. et al.) 325–349 (Elsevier, 2020).

  • 29.

    Chen, X. L. et al. Broadly tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Bonaccorso, F. et al. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Mak, Ok. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metallic dichalcogenides. Nat. Photonics 10, 216–226 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Dong, B. W. et al. Black phosphorus based mostly photodetectors. in Fundamentals and Functions of Phosphorus Nanomaterials. (ed. Ji, H. F.) Ch. 3 (American Chemical Society, 2019).

  • 33.

    Amani, M. et al. Answer-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018).

    Article 

    Google Scholar
     

  • 34.

    Yu, T. T. et al. Two‐dimensional GeP‐based mostly broad‐band optical switches and photodetectors. Adv. Optical Mater. 8, 1901490 (2020).

    Article 

    Google Scholar
     

  • 35.

    Wang, Y. et al. Excessive-speed infrared two-dimensional platinum diselenide photodetectors. Appl. Phys. Lett. 116, 211101 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Buscema, M. et al. Photocurrent era with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    Article 

    Google Scholar
     

  • 37.

    Sze, S. M. Physics of Semiconductor Units. (John Wiley and Sons, New York, 1981).


    Google Scholar
     

  • 38.

    Di Bartolomeo, A. Graphene Schottky diodes: an experimental evaluate of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016).

    MathSciNet 
    Article 

    Google Scholar
     

  • 39.

    Scales, C. & Berini, P. Skinny-film Schottky barrier photodetector fashions. IEEE J. Quantum Electron. 46, 633–643 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Miao, J. S. & Wang, C. Avalanche photodetectors based mostly on two-dimensional layered supplies. Nano Res. https://doi.org/10.1007/s12274-020-3001-8 (2020).

  • 41.

    Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016).

    Article 

    Google Scholar
     

  • 42.

    Vu, Q. A. et al. Tuning service tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett. 17, 453–459 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Furchi, M. M. et al. Mechanisms of photoconductivity in atomically skinny MoS2. Nano Lett. 14, 6165–6170 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Zhu, W. J. et al. Digital transport and machine prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 45.

    Guo, X. T. et al. Excessive-performance graphene photodetector utilizing interfacial gating. Optica 3, 1066–1070 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Liu, Y. et al. Extremely environment friendly and air-stable infrared photodetector based mostly on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).

    Article 

    Google Scholar
     

  • 47.

    Malic, E. et al. Provider dynamics in graphene: ultrafast many‐particle phenomena. Ann. der Phys. 529, 1700038 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 48.

    Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Low, T. et al. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Du, X. et al. Graphene-based bolometers. Graphene 2D Mater. 1, 1–22 (2014).


    Google Scholar
     

  • 51.

    Yan, J. et al. Twin-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 52.

    Jago, R., Malic, E. & Wendler, F. Microscopic origin of the bolometric impact in graphene. Phys. Rev. B 99, 035419 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Efetov, D. Ok. et al. Quick thermal leisure in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Blaikie, A., Miller, D. & Alemán, B. J. A quick and delicate room-temperature graphene nanomechanical bolometer. Nat. Commun. 10, 4726 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 55.

    Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 56.

    Vora, H. et al. Bolometric response in graphene based mostly superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 57.

    Gabor, N. M. et al. Scorching service–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 58.

    Guo, J. S. et al. Excessive-performance silicon-graphene hybrid plasmonic waveguide photodetectors past 1.55 μm. Gentle.: Sci. Appl. 9, 29 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 59.

    Xia, F. N. et al. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 60.

    Shiue, R. J. et al. Excessive-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic built-in circuit. Nano Lett. 15, 7288–7293 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 61.

    Tielrooij, Ok. J. et al. Technology of photovoltage in graphene on a femtosecond timescale by environment friendly service heating. Nat. Nanotechnol. 10, 437–443 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 62.

    Tielrooij, Ok. J. et al. Scorching-carrier photocurrent results at graphene-metal interfaces. J. Phys. 27, 164207 (2015).


    Google Scholar
     

  • 63.

    Freitag, M. et al. Photoconductivity of biased graphene. Nat. Photonics 7, 53–59 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 64.

    Bie, Y. Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic built-in circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 65.

    Buscema, M. et al. Photovoltaic impact in few-layer black phosphorus PN junctions outlined by native electrostatic gating. Nat. Commun. 5, 4651 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 66.

    Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based mostly on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 67.

    Guo, Q. S. et al. Black phosphorus mid-infrared photodetectors with excessive acquire. Nano Lett. 16, 4648–4655 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 68.

    Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared functions. ACS Nano 13, 913–921 (2019).

    Article 

    Google Scholar
     

  • 69.

    Ma, Y. M. et al. Excessive-responsivity mid-infrared black phosphorus gradual gentle waveguide photodetector. Adv. Optical Mater. 8, 2000337 (2020).

    Article 

    Google Scholar
     

  • 70.

    Maiti, R. et al. Pressure-engineered high-responsivity MoTe2 photodetector for silicon photonic built-in circuits. Nat. Photonics 14, 578–584 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 71.

    Youngblood, N. et al. Waveguide-integrated black phosphorus photodetector with excessive responsivity and low darkish present. Nat. Photonics 9, 247–252 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 72.

    Yin, Y. L. et al. Excessive-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev. 13, 1900032 (2019).

    Article 

    Google Scholar
     

  • 73.

    Hong, T. et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6, 8978–8983 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 74.

    Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh acquire. Nat. Nanotechnol. 7, 363–368 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 75.

    Ni, Z. Y. et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano 11, 9854–9862 (2017).

    Article 

    Google Scholar
     

  • 76.

    Liu, Y. D. et al. Planar carbon nanotube–graphene hybrid movies for high-performance broadband photodetectors. Nat. Commun. 6, 8589 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 77.

    Shin, G. H. et al. Ultrasensitive phototransistor based mostly on WSe2–MoS2 van der Waals heterojunction. Nano Lett. 20, 5741–5748 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 78.

    Chen, Z. F. et al. Synergistic results of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 11, 430–437 (2017).

    Article 

    Google Scholar
     

  • 79.

    Liu, J. J. et al. Silicon-graphene conductive photodetector with ultra-high responsivity. Sci. Rep. 7, 40904 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 80.

    Venuthurumilli, P. Ok., Ye, P. D. & Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in close to infrared. ACS Nano 12, 4861–4867 (2018).

    Article 

    Google Scholar
     

  • 81.

    Wang, X. D. et al. Ultrasensitive and broadband MoS2 photodetector pushed by ferroelectrics. Adv. Mater. 27, 6575–6581 (2015).

    Article 

    Google Scholar
     

  • 82.

    Yu, W. J. et al. Extremely environment friendly gate-tunable photocurrent era in vertical heterostructures of layered supplies. Nat. Nanotechnol. 8, 952–958 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 83.

    Britnell, L. et al. Sturdy light-matter interactions in heterostructures of atomically skinny movies. Science 340, 1311–1314 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 84.

    Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 85.

    Heo, J. et al. Reconfigurable van der Waals heterostructured units with metallic–insulator transition. Nano Lett. 16, 6746–6754 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 86.

    Lengthy, M. S. et al. Broadband photovoltaic detectors based mostly on an atomically skinny heterostructure. Nano Lett. 16, 2254–2259 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 87.

    Lee, C. H. et al. Atomically skinny p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 88.

    Yang, S. et al. Monolithic interface contact engineering to spice up optoelectronic performances of 2D semiconductor photovoltaic heterojunctions. Nano Lett. 20, 2443–2451 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 89.

    Ma, P. et al. Quick MoTe2 waveguide photodetector with excessive sensitivity at telecommunication wavelengths. ACS Photonics 5, 1846–1852 (2018).

    Article 

    Google Scholar
     

  • 90.

    Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with excessive pace and excessive responsivity. Nat. Nanotechnol. 15, 118–124 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 91.

    Lee, J. et al. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional units. Nano Lett. 20, 2370–2377 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 92.

    Ye, L. et al. Close to-infrared photodetector based mostly on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692–699 (2016).

    Article 

    Google Scholar
     

  • 93.

    Li, H., Ye, L. & Xu, J. B. Excessive-performance broadband floating-base bipolar phototransistor based mostly on WSe2/BP/MoS2 heterostructure. ACS Photonics 4, 823–829 (2017).

    Article 

    Google Scholar
     

  • 94.

    Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with excessive detectivity at room temperature. Nat. Photonics 12, 601–607 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 95.

    Yan, W. et al. Spectrally selective mid-wave infrared detection utilizing fabry-pérot cavity enhanced black phosphorus 2D photodiodes. ACS Nano 14, 13645–13651 (2020).

    Article 

    Google Scholar
     

  • 96.

    Yu, W. J. et al. Unusually environment friendly photocurrent extraction in monolayer van der Waals heterostructure by tunnelling by discretized obstacles. Nat. Commun. 7, 13278 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 97.

    Gao, A. Y. et al. Commentary of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 14, 217–222 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 98.

    Wang, X. M. et al. Excessive-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888–891 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 99.

    Goykhman, I. et al. On-chip built-in, silicon–graphene plasmonic schottky photodetector with excessive responsivity and avalanche photogain. Nano Lett. 16, 3005–3013 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 100.

    Massicotte, M. et al. Picture-thermionic impact in vertical graphene heterostructures. Nat. Commun. 7, 12174 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 101.

    Li, L. F. et al. Plasmon excited ultrahot carriers and damaging differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett. 19, 3295–3304 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 102.

    Jeong, H. et al. Steel–insulator–semiconductor diode consisting of two-dimensional nanomaterials. Nano Lett. 16, 1858–1862 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 103.

    De Fazio, D. et al. Graphene-quantum dots hybrid photodetectors with low dark-current readout. ACS Nano 14, 11897–11905 (2020).

    Article 

    Google Scholar
     

  • 104.

    Koester, S. J. & Li, M. Waveguide-coupled graphene optoelectronics. IEEE J. Sel. Prime. Quantum Electron. 20, 6000211 (2014).

    Article 

    Google Scholar
     

  • 105.

    Romagnoli, M. et al. Graphene-based built-in photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 106.

    Ma, Z. Z. et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with excessive responsivity. ACS Photonics 7, 932–940 (2020).

    Article 

    Google Scholar
     

  • 107.

    Pospischil, A. et al. CMOS-compatible graphene photodetector masking all optical communication bands. Nat. Photonics 7, 892–896 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 108.

    Ding, Y. H. et al. Extremely-compact built-in graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 9, 317–325 (2020).

    Article 

    Google Scholar
     

  • 109.

    Gan, X. T. et al. Chip-integrated ultrafast graphene photodetector with excessive responsivity. Nat. Photonics 7, 883–887 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 110.

    Schall, D. et al. 50 GBit/s photodetectors based mostly on wafer-scale graphene for built-in silicon photonic communication techniques. ACS Photonics 1, 781–784 (2014).

    Article 

    Google Scholar
     

  • 111.

    Gao, Y. et al. Excessive-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors. Decide. Lett. 43, 1399–1402 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 112.

    Schuler, S. et al. Managed era of a p–n junction in a waveguide built-in graphene photodetector. Nano Lett. 16, 7107–7112 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 113.

    Schuler, S. et al. Graphene photodetector built-in on a photonic crystal defect waveguide. ACS Photonics 5, 4758–4763 (2018).

    Article 

    Google Scholar
     

  • 114.

    Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19, 7632–7644 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 115.

    Schuler, S. et al. Excessive-responsivity graphene photodetectors built-in on silicon microring resonators. Preprint at https://arxiv.org/abs/2007.03044 (2020).

  • 116.

    Marconi, S. et al. Picture thermal impact graphene detector that includes 105 Gbit s−1 NRZ and 120 Gbit s−1 PAM4 direct detection. Nat. Commun. 12, 806 (2021).

    ADS 
    Article 

    Google Scholar
     

  • 117.

    Mišeikis, V. et al. Ultrafast, zero-bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides. ACS Nano 14, 11190–11204 (2020).

    Article 

    Google Scholar
     

  • 118.

    Schall, D. et al. Graphene photodetectors with a bandwidth> 76 GHz fabricated in a 6” wafer course of line. J. Phys. D: Appl. Phys. 50, 124004 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 119.

    Ma, P. et al. Plasmonically enhanced graphene photodetector that includes 100 Gbit/s information reception, excessive responsivity, and compact dimension. ACS Photonics 6, 154–161 (2019).

    Article 

    Google Scholar
     

  • 120.

    Urich, A., Unterrainer, Ok. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 121.

    Wang, Y. et al. Certain-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics 7, 2643–2649 (2020).

    Article 

    Google Scholar
     

  • 122.

    Li, T. T. et al. Spatially managed electrostatic doping in graphene pin junction for hybrid silicon photodiode. npj 2D Mater. Appl. 2, 36 (2018).

    Article 

    Google Scholar
     

  • 123.

    Gao, Y. et al. Excessive-speed van der Waals heterostructure tunneling photodiodes built-in on silicon nitride waveguides. Optica 6, 514–517 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 124.

    Goossens, S. et al. Broadband picture sensor array based mostly on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 125.

    Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 126.

    Lien, M. B. et al. Ranging and lightweight area imaging with clear photodetectors. Nat. Photonics 14, 143–148 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 127.

    Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 128.

    Cakmakyapan, S. et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the seen to infrared regime. Gentle.: Sci. Appl. 7, 20 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 129.

    Amani, M. et al. Mid-wave infrared photoconductors based mostly on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017).

    Article 

    Google Scholar
     

  • 130.

    Lengthy, M. S. et al. Room temperature high-detectivity mid-infrared photodetectors based mostly on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 131.

    Shen, C. F. et al. Tellurene photodetector with excessive acquire and large bandwidth. ACS Nano 14, 303–310 (2020).

    Article 

    Google Scholar
     

  • 132.

    Chen, C. C. et al. Graphene-silicon schottky diodes. Nano Lett. 11, 5097 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 133.

    Selvi, H. et al. Graphene–silicon-on-insulator (GSOI) Schottky diode photodetectors. Nanoscale 10, 18926–18935 (2018).

    Article 

    Google Scholar
     

  • 134.

    Chang, Ok. E. et al. Gate-controlled graphene-silicon schottky junction photodetector. Small 14, 1801182 (2018).

    Article 

    Google Scholar
     

  • 135.

    Wang, W. H. et al. Excessive-performance position-sensitive detector based mostly on graphene–silicon heterojunction. Optica 5, 27–31 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 136.

    Casalino, M. et al. Vertically illuminated, resonant cavity enhanced, graphene–silicon schottky photodetectors. ACS Nano 11, 10955–10963 (2017).

    Article 

    Google Scholar
     

  • 137.

    Selvi, H. et al. In direction of substrate engineering of graphene–silicon Schottky diode photodetectors. Nanoscale 10, 3399–3409 (2018).

    Article 

    Google Scholar
     

  • 138.

    Casalino, M. et al. Free-space schottky graphene/silicon photodetectors working at 2 μm. ACS Photonics 5, 4577–4585 (2018).

    Article 

    Google Scholar
     

  • 139.

    Mao, J. et al. Ultrafast, broadband photodetector based mostly on MoSe2/silicon heterojunction with vertically standing layered construction utilizing graphene as clear electrode. Adv. Sci. 3, 1600018 (2016).

    Article 

    Google Scholar
     

  • 140.

    Jiang, W. et al. A flexible photodetector assisted by photovoltaic and bolometric results. Gentle.: Sci. Appl. 9, 160 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 141.

    Mueller, T., Xia, F. N. & Avouris, R. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).

    Article 

    Google Scholar
     

  • 142.

    Zhang, Y. Z. et al. Broadband excessive photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 143.

    Xiong, X. et al. Excessive efficiency black phosphorus digital and photonic units with HfLaO dielectric. IEEE Electron System Lett. 39, 127–130 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 144.

    Liu, Y. et al. Extremely responsive broadband black phosphorus photodetectors. Chin. Decide. Lett. 16, 020002 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 145.

    Verguts, Ok. et al. Controlling water intercalation is essential to a direct graphene switch. ACS Appl. Mater. Interfaces 9, 37484–37492 (2017).

    Article 

    Google Scholar
     

  • 146.

    Wang, B. et al. Assist-free switch of ultrasmooth graphene movies facilitated by self-assembled monolayers for digital units and patterns. ACS Nano 10, 1404–1410 (2016).

    Article 

    Google Scholar
     

  • 147.

    Chen, M. G. et al. Advances in transferring chemical vapour deposition graphene: a evaluate. Mater. Horiz. 4, 1054–1063 (2017).

    Article 

    Google Scholar
     

  • 148.

    Moon, J. Y. et al. Layer-engineered large-area exfoliation of graphene. Sci. Adv. 6, eabc6601 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 149.

    Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D supplies and units. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article 

    Google Scholar
     

  • 150.

    Konstantatos, G. Present standing and technological prospect of photodetectors based mostly on two-dimensional supplies. Nat. Commun. 9, 5266 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 151.

    Rogalski, A. Graphene-based supplies within the infrared and terahertz detector households: a tutorial. Adv. Decide. Photonics 11, 314–379 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 152.

    Lin, H. T. et al. Mid-infrared built-in photonics on silicon: a perspective. Nanophotonics 7, 393–420 (2017).

    Article 

    Google Scholar
     

  • 153.

    Seeds, A. J. et al. Terahertz photonics for wi-fi communications. J. Lightwave Technol. 33, 579–587 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 154.

    Yan, S. Q. et al. 2D supplies built-in with metallic nanostructures: fundamentals and optoelectronic functions. Nanophotonics 9, 1877–1900 (2020).

    Article 

    Google Scholar
     

  • 155.

    Liu, Y. et al. Van der Waals heterostructures and units. Nat. Rev. Mater. 1, 16042 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 156.

    Yuan, X. et al. Wafer-scale arrayed p-n junctions based mostly on few-layer epitaxial GaTe. Nano Res. 8, 3332–3341 (2015).

    Article 

    Google Scholar
     

  • 157.

    Giambra, M. A. et al. Wafer-scale integration of graphene-based photonic units. ACS Nano 15, 3171–3187 (2021).

    Article 

    Google Scholar
     

  • 158.

    Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration earlier than and past two-dimensional supplies. Nature 567, 323–333 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 159.

    Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication strains. Nat. Mater. 18, 525–529 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 160.

    Qu, Z. et al. Waveguide built-in graphene mid-infrared photodetector. In Proceedings of SPIE 10537, Silicon Photonics XIII. (SPIE, 2018). 105371N.

  • 161.

    Chen, C. et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 17, 985–991 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 162.

    Yuan, S. F. et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength vary. ACS Photonics 5, 1206–1215 (2020).

    Article 

    Google Scholar
     

  • 163.

    Xu, M. et al. Black phosphorus mid-infrared photodetectors. Appl. Phys. B 123, 130 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 164.

    Yuan, S. F. et al. Air-stable room-temperature mid-infrared photodetectors based mostly on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18, 3172–3179 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 165.

    Xiang, D. et al. Anomalous broadband spectrum photodetection in 2D rhenium disulfide transistor. Adv. Optical Mater. 7, 1901115 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 166.

    Liu, C. H. et al. Graphene photodetectors with ultra-broadband and excessive responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 167.

    Kim, W. et al. Photoresponse of graphene-gated graphene-GaSe heterojunction units. ACS Appl. Nano Mater. 1, 3895–3902 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 168.

    Liu, X. Z. et al. Infrared photodetector based mostly on the photothermionic impact of graphene-nanowall/silicon heterojunction. ACS Appl. Mater. Interfaces 11, 17663–17669 (2019).

    Article 

    Google Scholar
     



  • Source link