GRAPHENE

Synthesis and properties of free-standing monolayer amorphous carbon

  • 1.

    Zachariasen, W. H. The atomic association in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    Article  CAS  Google Scholar 

  • 2.

    Voyles, P. M. & Abelson, J. R. Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Sol. Power Mater. Sol. Cells 78, 85–113 (2003).

    Article  CAS  Google Scholar 

  • 3.

    Gibson, J. M., Treacy, M. M. J., Solar, T. & Zaluzec, N. J. Substantial crystalline topology in amorphous silicon. Phys. Rev. Lett. 105, 125504 (2010).

    ADS  Article  CAS  Google Scholar 

  • 4.

    Treacy, M. M. J. & Borisenko, Ok. B. The native construction of amorphous silicon. Science 335, 950–953 (2012).

    ADS  Article  CAS  Google Scholar 

  • 5.

    Herman, I. P. Laser-assisted deposition of skinny movies from gas-phase and surface-adsorbed molecules. Chem. Rev. 89, 1323–1357 (1989).

    Article  CAS  Google Scholar 

  • 6.

    Wright, A. C. Neutron scattering from vitreous silica. V. The construction of vitreous silica: what have we realized from 60 years of diffraction research? J. Non-Cryst. Solids 179, 84–115 (1994).

    ADS  Article  CAS  Google Scholar 

  • 7.

    Wright, A. C. The good crystallite versus random community controversy: a private perspective. Int. J. Appl. Glass Sci. 5, 31–56 (2014).

    Article  Google Scholar 

  • 8.

    Roorda, S. & Lewis, L. J. Touch upon “The Native Construction of Amorphous Silicon”. Science 338, 1539 (2012).

    ADS  Article  CAS  Google Scholar 

  • 9.

    Eder, F. R., Kotakoski, J., Kaiser, U. & Meyer, J. C. A journey from order to dysfunction—atom by atom transformation from graphene to a 2D carbon glass. Sci. Rep. 4, 4060 (2014).

    ADS  Article  CAS  Google Scholar 

  • 10.

    Kotakoski, J., Krasheninnikov, A. V., Kaiser, U. & Meyer, J. C. From level defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011).

    ADS  Article  CAS  Google Scholar 

  • 11.

    Turchanin, A. et al. Conversion of self-assembled monolayers into nanocrystalline graphene: construction and electrical transport. ACS Nano 5, 3896–3904 (2011).

    Article  Google Scholar 

  • 12.

    Joo, W.-J. et al. Realization of steady Zachariasen carbon monolayer. Sci. Adv. 3, e1601821 (2017).

    ADS  Article  CAS  Google Scholar 

  • 13.

    Zandiatashbar, A. et al. Impact of defects on the intrinsic energy and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    ADS  Article  CAS  Google Scholar 

  • 14.

    Araujo, P. T., Terrones, M. & Dresselhaus, M. S. Defects and impurities in graphene-like supplies. Mater. At the moment 15, 98–109 (2012).

    Article  CAS  Google Scholar 

  • 15.

    Zhang, C., Hao, X.-L., Wang, C.-X., Wei, N. & Rabczuk, T. Thermal conductivity of graphene nanoribbons beneath shear deformation: a molecular dynamics simulation. Sci. Rep. 7, 41398 (2017).

    ADS  Article  CAS  Google Scholar 

  • 16.

    Lichtenstein, L. et al. The atomic construction of a metal-supported vitreous skinny silica movie. Angew. Chem. Int. Ed. 51, 404–407 (2012).

    Article  CAS  Google Scholar 

  • 17.

    Lusk, M. T. & Carr, L. D. Nanoengineering defect constructions on graphene. Phys. Rev. Lett. 100, 175503 (2008).

    ADS  Article  CAS  Google Scholar 

  • 18.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic energy of monolayer graphene. Science 321, 385–388 (2008).

    ADS  Article  CAS  Google Scholar 

  • 19.

    Mahvash, F., Paradis, E., Drouin, D., Szkopek, T. & Siaj, M. House-charge restricted transport in large-area monolayer hexagonal boron nitride. Nano Lett. 15, 2263–2268 (2015).

    ADS  Article  CAS  Google Scholar 

  • 20.

    Kim, D. Y., Jeong, H., Kim, J., Han, N. & Kim, J. Ok. Defect-mediated in-plane electrical conduction in few-layer sp 2-hybridized boron nitrides. ACS Appl. Mater. Interfaces 10, 17287–17294 (2018).

    Article  CAS  Google Scholar 

  • 21.

    Rodin, A. S. & Fogler, M. M. Obvious power-law conduct of conductance in disordered quasi-one-dimensional programs. Phys. Rev. Lett. 105, 106801 (2010).

    ADS  Article  CAS  Google Scholar 

  • 22.

    Rodin, A. S. & Fogler, M. M. Hopping transport in programs of finite thickness or size. Phys. Rev. B 84, 125447 (2011).

    ADS  Article  CAS  Google Scholar 

  • 23.

    Morozov, S. V. et al. Large intrinsic provider mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    ADS  Article  CAS  Google Scholar 

  • 24.

    Kapko, V., Drabold, D. A. & Thorpe, M. F. Digital construction of a practical mannequin of amorphous graphene. Phys. Standing Solidi B 247, 1197–1200 (2010).

    Article  CAS  Google Scholar 

  • 25.

    Tauc, J. Optical properties and digital construction of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968).

    Article  CAS  Google Scholar 

  • 26.

    Rusli Amaratunga, G. A. J. & Silva, S. R. P. Photoluminescence in amorphous carbon skinny movies and its relation to the microscopic properties. Skinny Stable Movies 270, 160–164 (1995).

    ADS  Article  Google Scholar 

  • 27.

    Zhuang, J., Zhao, R., Dong, J., Yan, T. & Ding, F. Evolution of domains and grain boundaries in graphene: a kinetic Monte Carlo simulation. Phys. Chem. Chem. Phys. 18, 2932–2939 (2016).

    Article  CAS  Google Scholar 

  • 28.

    Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000).

    ADS  Article  CAS  Google Scholar 

  • 29.

    Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS  Article  CAS  Google Scholar 

  • 30.

    Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  CAS  Google Scholar 

  • 31.

    Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  Article  CAS  Google Scholar 

  • 32.

    Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    ADS  Article  CAS  Google Scholar 

  • Source