GRAPHENE

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

  • 1

    Novoselov, Okay. S. et al. Electrical subject impact in atomically skinny carbon movie. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  • 2

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, Okay. S. & Geim, A. Okay. The digital properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Article  Google Scholar 

  • 3

    Geim, A. Okay. Graphene: Standing and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4

    Wang, Q. H., Kalantar-Zadeh, Okay., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and opto-electronics of two-dimensional transition metallic dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    CAS  Article  Google Scholar 

  • 5

    Mak, Okay. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically skinny MoS2: A brand new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 6

    Splendiani, A. et al. Rising photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7

    Cao, T. et al. Valley-selective round dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  CAS  Google Scholar 

  • 8

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  • 9

    Mak, Okay. F., He, Okay., Shan, J. & Heinz, T. F. Management of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  • 10

    Li, H. et al. Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    CAS  Article  Google Scholar 

  • 12

    Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M. W. & Chhowalla, M. Coherent atomic and digital heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012).

    CAS  Article  Google Scholar 

  • 13

    Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14

    Castellanos-Gomez, A. et al. Laser-thinning of MoS2: On demand era of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15

    Feng, J. et al. Large moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16

    Matte, H. S. S. et al. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010).

    CAS  Article  Google Scholar 

  • 17

    Li, H. et al. Fabrication of single- and multilayer MoS2 film-based subject impact transistors for sensing NO at room temperature. Small 8, 63–67 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18

    Loh, Okay. P., Bao, Q. L., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tuneable platform for optical purposes. Nature Chem. 2, 1015–1024 (2010).

    CAS  Article  Google Scholar 

  • 19

    Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008).

    CAS  Article  Google Scholar 

  • 20

    Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Buildings of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, 125407 (2002).

    Article  CAS  Google Scholar 

  • 21

    Kuc, A., Zibouche, N. & Heine, T. Affect of quantum confinement on the digital construction of the transition metallic sulfide TS2 . Phys. Rev. B 83, 245213 (2011).

    Article  CAS  Google Scholar 

  • 22

    Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Cost-density waves and superlattices within the metallic layered transition metallic dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    CAS  Article  Google Scholar 

  • 23

    Meyer, J. C., Geim, A. G., Katnelson, M. I., Novoselov, Okay. S. & Roth, S. The construction of suspended graphene sheets. Nature 446, 60–63 (2006).

    Article  CAS  Google Scholar 

  • 24

    Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    CAS  Article  Google Scholar 

  • 25

    Wilson, J. A. & Yoffe, A. D. The transition metallic dichalcogenides dialogue and interpretation of optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    CAS  Article  Google Scholar 

  • 26

    Bissessur, R., Kanatzidis, M. G., Schindler, J. L. & Kannewurf, C. R. Encapsulation of polymers into MoS2 and metallic to insulator transition in metastable MoS2 . J. Chem. Soc. Chem. Commun. 1582–1585 (1993).

  • 27

    Frindt, R. F. & Yoffe, A. D. Bodily properties of layer buildings: Optical properties and photoconductivity of skinny crystals of molybdenum disulphide. Proc. R. Soc. Lond. A 273, 69–83 (1963).

    Article  Google Scholar 

  • 28

    Py, M. A. & Haering, R. R., Structural destabilization induced by lithium intercalation in MoS2 and related-compounds. Can. J. Phys. 61, 76–84 (1983).

    CAS  Article  Google Scholar 

  • 29

    Ganal, P., Olberding, W. & Butz, T. Mushy chemistry induced host metallic coordination change from octahedral to trigonal prismatic 1T-TaS2 . Strong State Ionics 59, 313–319 (1993).

    CAS  Article  Google Scholar 

  • 30

    Lorenz, T., Teich, D., Joswig, J. O. & Seifert, G. Theoretical research of mechanical habits of particular person TiS2 and MoS2 nanotubes. J. Phys. Chem. C 116, 11714–11721 (2012).

    CAS  Article  Google Scholar 

  • 31

    Castro Neto, A. H. Cost density wave, superconductivity, and anomalous metallic habits in 2D transition metallic dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).

    CAS  Article  Google Scholar 

  • 32

    Heising, J. & Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: Ionic or impartial species? Encapsulation and ordering of onerous electropositive cations. J. Am. Chem. Soc. 121, 11720–11732 (1999).

    CAS  Article  Google Scholar 

  • 33

    Castro Neto, A. H. & Novoselov, Okay. Two dimensional crystals: Past graphene. Mater. Exp. 1, 10–17 (2011).

    CAS  Article  Google Scholar 

  • 34

    Tongay, S. et al. Thermally pushed crossover from oblique towards direct bandgap in 2D semiconductors: MoSe2 versus MoS2 . Nano Lett. 12, 5576–5580 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35

    Zhao, W. et al. Evolution of digital construction in atomically skinny sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and different group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 37

    Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    CAS  Article  Google Scholar 

  • 38

    Dines, M. B. Lithium intercalation by way of n-butyllithium of layered transition-metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

    CAS  Article  Google Scholar 

  • 39

    Benavente, E., Santa Ana, M. A., Mendizabal, F. & Gonzalez, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87–109 (2002).

    CAS  Article  Google Scholar 

  • 40

    Golub, A. S., Zubavichus, Y. V., Slovokhotov, Y. L. & Novikov, Y. N. Single-layer dispersions of transition metallic dichalcogenides within the synthesis of intercalation compounds. Russian Chem. Rev. 72, 123–141 (2003).

    CAS  Article  Google Scholar 

  • 41

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered supplies. Science 331, 568–571 (2011).

    CAS  Article  Google Scholar 

  • 42

    Zeng, Z. Y. et al. Single-layer semiconducting nanosheets: Excessive-yield preparation and machine fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    CAS  Article  Google Scholar 

  • 43

    Zhou, Okay.-G., Mao, N.-N., Wang, H.-X., Peng, Y. & Zhang, H.-L. A mixed-solvent technique for environment friendly exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50, 10839–10842 (2011).

    CAS  Article  Google Scholar 

  • 44

    Cunningham, G. et al. Solvent exfoliation of transition metallic dichalcogenides: Dispersibility of exfoliated nanosheets varies solely weakly between compounds. ACS Nano 6, 3468–3480 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45

    Smith, R. J. et al. Massive-scale exfoliation of inorganic layered compounds in aqueous surfactant options. Adv. Mater. 23, 3944–3948 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46

    Could, P., Khan, U., Hughes, J. M. & Coleman, J. N. Function of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J. Phys. Chem. C 116, 11393–11400 (2012).

    CAS  Article  Google Scholar 

  • 47

    Zeng, Z. et al. An efficient technique for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    CAS  Article  Google Scholar 

  • 48

    Hernandez, Y. et al. Excessive-yield manufacturing of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    CAS  Article  Google Scholar 

  • 49

    Zhi, C., Bando, Y., Tang, C., Kuwahara, H. & Goldberg, D. Massive scale fabrication of boron nitrode nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889–2893 (2009).

    CAS  Article  Google Scholar 

  • 50

    O’Neill, A., Khan, U. & Coleman, J. N. Preparation of excessive focus dispersions of exfoliated MoS2 with elevated flake measurement. Chem. Mater. 24, 2414–2421 (2012).

    CAS  Article  Google Scholar 

  • 51

    Li, X. et al. Massive-area synthesis of high-quality and uniform graphene movies on copper foils. Science 324, 1312–1314 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52

    Bae, S. et al. Roll-to-roll manufacturing of 30-inch graphene movies for clear electrodes. Nature Nanotech. 5, 574–578 (2010).

    CAS  Article  Google Scholar 

  • 53

    Liu, Okay.-Okay. et al. Progress of large-area and extremely crystalline MoS2 skinny layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54

    Lee, H. S. et al. MoS2 Nanosheet phototransistors with thickness-modulated optical power hole. Nano Lett. 12, 3695–3700 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55

    Shi, Y. et al. Van der waals epitaxy of MoS2 layers utilizing graphene as progress templates. Nano Lett. 12, 2784–2791 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56

    Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Massive-area vapor-phase progress and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57

    Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58

    Salmeron, M., Somorjai, G. A. & Chianelli R. R. A LEED-AES research of the construction of sulfur monolayers on the Mo(100) crystal face. Surf. Sci. 127, 526–540 (1983).

    CAS  Article  Google Scholar 

  • 59

    Wilson, J. M. LEED and AES research of the interplay of H2S and Mo (100). Surf. Sci. 53, 330–340 (1975).

    CAS  Article  Google Scholar 

  • 60

    Lin, Y.-C. et al. Wafer-scale MoS2 skinny layers ready by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61

    Jager-waldau, A., Lux-steiner, M., Jager-waldau, R., Burkhardt, R. & Bucher, E. Composition and morphology of MoSe2 skinny movies. Skinny Strong Movies 189, 339–345 (1990).

    Article  Google Scholar 

  • 62

    Genut, M., Margulis, L., Tenne, R. & Hodes, G. Impact of substrate on progress of WS2 skinny movies. Skinny Strong Movies 219, 30–36 (1992).

    CAS  Article  Google Scholar 

  • 63

    Ennaoui, A., Fiechter, S., Ellmer, Okay., Scheer, R. & Diesner, Okay. Preparation of textured and photoactive 2H-WS2 skinny movies by sulfurization of WO3 . Skinny Strong Movies 261, 124–131 (1995).

    CAS  Article  Google Scholar 

  • 64

    Boscher, N. D., Carmalt, C. J., Palgrave, R. G., Gil-Tomas, J. J. & Parkin. I. P. Atmospheric stress CVD of molybdenum diselenide movies on glass. Chem. Vapor. Depos. 12, 692–698 (2006).

    CAS  Article  Google Scholar 

  • 65

    Carmalt, C. J., Parkin, I. P. & Peters. E. S. Atmospheric stress chemical vapour deposition of WS2 skinny movies on glass. Polyhedron 22, 1499–4505 (2003).

    CAS  Article  Google Scholar 

  • 66

    Boscher, N. D., Carmalt, C. J. & Parkin. I. P. Atmospheric stress chemical vapor deposition of WSe2 skinny movies on glass–extremely hydrophobic sticky surfaces. J. Mater. Chem. 16, 122–127 (2006).

    CAS  Article  Google Scholar 

  • 67

    Boscher, N. D., Blackman, C. S., Carmalt, C. J., Parkin, I. P. & Prieto. A. G. Atmospheric stress chemical vapour deposition of vanadium diselenide skinny movies. Appl. Surf. Sci. 253, 6041–6046 (2007).

    CAS  Article  Google Scholar 

  • 68

    Peters, E. S., Carmalt, C. J. & Parkin, I. P. Twin-source chemical vapour deposition of titanium sulfide skinny movies from tetrakisdimethylamidotitanium and sulfur precursors. J. Mater. Chem. 14, 3474–3477 (2004).

    CAS  Article  Google Scholar 

  • 69

    Lauritsen, J. V. et al. Dimension-dependent construction of MoS2 nanocrystals. Nature Nanotech. 2, 53–58 (2007).

    CAS  Article  Google Scholar 

  • 70

    Tuxen, A. et al. Dimension threshold within the dibenzothiophene adsorption on MoS2 nanoclusters. ACS NANO 4, 4677–4682 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71

    Lauritsen, J. V. Location and coordination of promoter atoms in Co- and Ni-Promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007).

    CAS  Article  Google Scholar 

  • 72

    Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. Fe, Co, and Ni ions promote the catalytic exercise of amorphous molybdenum sulfide movies for hydrogen evolution. Chem. Sci. 2, 2515–2525 (2012).

    Article  CAS  Google Scholar 

  • 73

    Greeley, J. et al. Computational high-throughput screening of electrocatalytic supplies for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    CAS  Article  Google Scholar 

  • 74

    Laursen, L. B., Kegnæs, S., Dahla, S. & Chorkendorff, I. Molybdenum sulfides environment friendly and viable supplies for electro- and photoelectrocatalytic hydrogen evolution. Vitality Environ. Sci. 5, 5577–5591 (2012).

    CAS  Article  Google Scholar 

  • 75

    Li, Y. et al. MoS2 nanoparticles grown on graphene: a complicated catalyst for the hydrogen evolution response. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76

    Li, T. & Galli, G. Digital properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    CAS  Article  Google Scholar 

  • 77

    Merki, D. et al. Amorphous molybdenum sulfide movies as catalysts for electrochemical hydrogen manufacturing in water. Chem. Sci. 2, 1262–1267 (2011).

    CAS  Article  Google Scholar 

  • 78

    Norskov, J. Okay. et al. Traits within the trade present for hydrogen evolution. J. Electrochem. Chem. 152, J23–J26 (2005).

    CAS  Article  Google Scholar 

  • 79

    Nørskov, J. Okay., Bligaard, T., Rossmeisl, J. & Christensen, C. H. In the direction of the computational design of strong catalysts. Nature Chem. 1, 37–46 (2009).

    Article  CAS  Google Scholar 

  • 80

    Greeley, J. et al. Computational high-throughput screening of electrocatalytic supplies for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    CAS  Article  Google Scholar 

  • 81

    Bonde, J. et al. Hydrogen evolution on nano-particulate transition metallic sulfides. Faraday Talk about. 140, 219–231 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82

    Jaramillo, T. F. et al. Identification of lively edge websites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  • 83

    Karunadasa, H. I. et al. A molecular MoS2 edge web site mimic for catalytic hydrogen era, Science 335, 698–702 (2012).

    CAS  Article  Google Scholar 

  • 84

    Chang, Y.-H. et al. Extremely environment friendly electrocatalytic hydrogen manufacturing by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85

    Wilcoxon, J. P. & Samara G. A. Sturdy quantum-size results in a layered semiconductor: MoS2 nanoclusters. Phys. Rev. B 51, 7200 (1995).

    Article  Google Scholar 

  • 86

    Xiang, Q., Yu, J. & Jaroniec, M. Synergetic impact of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 manufacturing exercise of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87

    Zhou, W. J. et al. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic actions. Small 9, 140–147 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88

    Haering, R. R., Stiles, J. A. R. & Brandt, Okay. Lithium molybdenum disulphide battery cathode. US Patent 4224390 (1980).

  • 89

    Bhandavat, R., David, L. & Singh, G. Synthesis of surface-functionalized WS2 nanosheets and efficiency as Li-ion battery anodes. J. Phys. Chem. Lett. 3, 1523–1530 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90

    Chang, Okay., Chen, W. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with wonderful electrochemical properties for lithium ion batteries. ACS Nano 5, 4720–4728 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91

    Chang, Okay. & Chen, W. In situ synthesis of MoS2/graphene nanosheet composites with terribly excessive electrochemical efficiency for lithium ion batteries. Chem. Commun. 47, 4252–4254 (2011).

    CAS  Article  Google Scholar 

  • 92

    Feng, C. Q. et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery purposes. Mater. Res. Bull. 44, 1811–1815 (2009).

    CAS  Article  Google Scholar 

  • 93

    Ding, S., Zhang, D., Chen, J. S. & Lou, X. W. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4, 95–98 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 94

    Zhang, C., Wang, Z., Guo, Z. & Lou, X. W. Synthesis of MoS2-C one-dimensional nanostructures with improved Lithium storage properties. ACS Appl. Mater. Interfaces 4, 3765–3768 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 95

    Ding, S., Chen, J. S. & Lou, X. W. Glucose-assisted progress of MoS2 nanosheets on CNT spine for improved Lithium storage properties. Chem. Euro. J. 17, 13142–13145 (2011).

    CAS  Article  Google Scholar 

  • 96

    Zhang, C., Wu, H. B., Guo, Z. & Lou, X. W. Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Comm. 20, 7–10 (2012).

    CAS  Article  Google Scholar 

  • 97

    Chang, Okay. & Chen, W. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with wonderful electrochemical performances for lithium ion batteries. ACS Nano 5, 4720–4728 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 98

    Chang, Okay. & Chen, W. In situ synthesis of MoS2/graphene nanosheet composites with terribly excessive electrochemical efficiency for lithium ion batteries. Chem. Comm. 47, 4252–4254 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 99

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    CAS  Article  Google Scholar 

  • 100

    Radisavljevic, B., Whitwick, M. B. & Kis, A. Built-in circuits and logic operations based mostly on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 101

    Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 skinny flake transistors. Nano Lett. 12, 1136–1140 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 102

    Liu, L., Kumar, S. B., Ouyang, Y. & Gou, J. Efficiency limits of monolayer transition metallic dichalcogenide transistors. IEEE Trans. Electron Units 58, 3042–3047 (2011).

    CAS  Article  Google Scholar 

  • 103

    Kaasbjerg, Okay., Thygesen, Okay. S. & Jacobsen, Okay. W. Phonon-limited mobility in n-type single-layer MoS2 from first ideas. Phys. Rev. B 85, 115317 (2012).

    Article  CAS  Google Scholar 

  • 104

    Lee, Okay. et al. Electrical traits of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23, 4178–4182 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 105

    Late, D. J., Liu, B., Matte, H. S. S. R., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 subject impact transistors. ACS Nano 6, 5635–5641 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 106

    Fang, H. et al. Excessive-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 107

    Wang, H. et al. Built-in circuits based mostly on bilayer MoS2 transistors. Nano Lett. 12, 4674–4670 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 108

    Pu, J. et al. Extremely versatile MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    CAS  Article  Google Scholar 

  • 109

    Lee, S. H. et al. MoS2 phototransistors with thickness-modulated optical power hole. Nano Lett. 12, 3695–3700 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Source