GRAPHENE

The rise of graphene

  • 1

    Wallace, P. R. The band principle of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Google Scholar 

  • 2

    McClure, J. W. Diamagnetism of graphite. Phys. Rev. 104, 666–671 (1956).

    CAS  Google Scholar 

  • 3

    Slonczewski, J. C. & Weiss, P. R. Band construction of graphite. Phys. Rev. 109, 272–279 (1958).

    CAS  Google Scholar 

  • 4

    Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984).

    Google Scholar 

  • 5

    Fradkin, E. Vital conduct of disordered degenerate semiconductors. Phys. Rev. B 33, 3263–3268 (1986).

    CAS  Google Scholar 

  • 6

    Haldane, F. D. M. Mannequin for a quantum Corridor impact with out Landau ranges: Condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Google Scholar 

  • 7

    Novoselov, Okay. S. et al. Electrical subject impact in atomically skinny carbon movies. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  • 8

    Novoselov, Okay. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Google Scholar 

  • 9

    Novoselov, Okay. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  • 10

    Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental remark of the quantum Corridor impact and Berry’s section in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  • 11

    Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 5, 177–222 (1935).

    Google Scholar 

  • 12

    Landau, L. D. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11, 26–35 (1937).

    CAS  Google Scholar 

  • 13

    Landau, L. D. & Lifshitz, E. M. Statistical Physics, Half I (Pergamon, Oxford, 1980).

    Google Scholar 

  • 14

    Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968).

    Google Scholar 

  • 15

    Venables, J. A., Spiller, G. D. T. & Hanbucken, M. Nucleation and progress of skinny movies. Rep. Prog. Phys. 47, 399–459 (1984).

    Google Scholar 

  • 16

    Evans, J. W., Thiel, P. A. & Bartelt, M. C. Morphological evolution throughout epitaxial skinny movie progress: Formation of 2D islands and 3D mounds. Sur. Sci. Rep. 61, 1–128 (2006).

    CAS  Google Scholar 

  • 17

    Stankovich, S. et al. Graphene-based composite supplies. Nature 442, 282–286 (2006).

    CAS  Google Scholar 

  • 18

    Meyer, J. C. et al. The construction of suspended graphene sheets. Nature (within the press); doi:10.1038/nature05545.

    CAS  Google Scholar 

  • 19

    Nelson, D. R., Piran, T. & Weinberg, S. Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 2004).

    Google Scholar 

  • 20

    Partoens, B. & Peeters, F. M. From graphene to graphite: Digital construction across the Okay level. Phys. Rev. B 74, 075404 (2006).

    Google Scholar 

  • 21

    Morozov, S. V. et al. Two-dimensional electron and gap gases on the floor of graphite. Phys. Rev. B 72, 201401 (2005).

    Google Scholar 

  • 22

    Zhang, Y., Small, J. P., Amori, M. E. S. & Kim, P. Electrical subject modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005).

    Google Scholar 

  • 23

    Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    CAS  Google Scholar 

  • 24

    Shioyama, H. Cleavage of graphite to graphene. J. Mater. Sci. Lett. 20, 499–500 (2001).

    CAS  Google Scholar 

  • 25

    Viculis, L. M., Mack, J. J., & Kaner, R. B. A chemical path to carbon nanoscrolls. Science 299, 1361 (2003).

    CAS  Google Scholar 

  • 26

    Horiuchi, S. et al. Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84, 2403–2405 (2004).

    CAS  Google Scholar 

  • 27

    Krishnan, A. et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451–454 (1997).

    CAS  Google Scholar 

  • 28

    Land, T. A., Michely, T., Behm, R. J., Hemminger, J. C. & Comsa, G. STM investigation of single layer graphite buildings produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264, 261–270 (1992).

    CAS  Google Scholar 

  • 29

    Nagashima, A. et al. Digital states of monolayer graphite shaped on TiC(111) floor. Surf. Sci. 291, 93–98 (1993).

    CAS  Google Scholar 

  • 30

    van Bommel, A. J., Crombeen, J. E. & van Tooren, A. LEED and Auger electron observations of the SiC(0001) floor. Surf. Sci. 48, 463–472 (1975).

    Google Scholar 

  • 31

    Forbeaux, I., Themlin, J.-M. & Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation by means of conduction-band digital construction. Phys. Rev. B 58, 16396–16406 (1998).

    CAS  Google Scholar 

  • 32

    Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gasoline properties and a route towards graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    CAS  Google Scholar 

  • 33

    Berger, C. et al. Digital confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Google Scholar 

  • 34

    Ohta, T., Bostwick, A., Seyller, T., Horn, Okay. & Rotenberg, E. Controlling the digital construction of bilayer graphene. Science 313, 951–954 (2006).

    CAS  Google Scholar 

  • 35

    Ohashi, Y., Koizumi, T., Yoshikawa, T., Hironaka, T. & Shiiki, Okay. Measurement impact within the in-plane electrical resistivity of very skinny graphite crystals. TANSO 235–238 (1997).

  • 36

    Bunch, J. S., Yaish, Y., Brink, M., Bolotin, Okay. & McEuen, P. L. Coulomb oscillations and Corridor impact in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005).

    CAS  Google Scholar 

  • 37

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    CAS  Article  Google Scholar 

  • 38

    Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer movies. Nano Lett. 6, 2667–2673 (2006).

    CAS  Google Scholar 

  • 39

    Divigalpitiya, W. M. R., Frindt, R. F. & Morrison, S. R. Inclusion programs of natural molecules in restacked single-layer molybdenum disulfide. Science 246, 369–371 (1989).

    CAS  Google Scholar 

  • 40

    Klein, A., Tiefenbacher, S., Eyert, V., Pettenkofer, C. & Jaegermann, W. Digital band construction of single-crystal and single-layer WS2: Affect of interlayer van der Waals interactions. Phys. Rev. B 64, 205416 (2001).

    Google Scholar 

  • 41

    Schedin, F. et al. Detection of particular person gasoline molecules by graphene sensors. Preprint at http://arxiv.org/abs/cond-mat/0610809 (2006).

  • 42

    Novoselev, Okay. S. et al. Room-temperature quantum Corridor impact in graphene. Science (within the press); doi:10.1126/science.1137201.

    CAS  Google Scholar 

  • 43

    Schakel, A. M. J. Relativistic quantum Corridor impact. Phys. Rev. D 43, 1428–1431 (1991).

    CAS  Google Scholar 

  • 44

    González, J., Guinea, F. & Vozmediano, M. A. H. Unconventional quasiparticle lifetime in graphite. Phys. Rev. Lett. 77, 3589–3592 (1996).

    Google Scholar 

  • 45

    Gorbar, E. V., Gusynin, V. P., Miransky, V. A. & Shovkovy, I. A. Magnetic subject pushed metal-insulator section transition in planar programs. Phys. Rev. B 66, 045108 (2002).

    Google Scholar 

  • 46

    Katsnelson, M. I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 51, 157–160 (2006).

    CAS  Google Scholar 

  • 47

    Katsnelson, M. I, Novoselov, Okay. S. & Geim, A. Okay. Chiral tunnelling and the Klein paradox in graphene. Nature Phys 2, 620–625 (2006).

    CAS  Google Scholar 

  • 48

    Tworzydlo, J., Trauzettel, B., Titov, M., Rycerz, A. & Beenakker, C. W. J. Quantum-limited shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

    CAS  Google Scholar 

  • 49

    Zawadzki, W. Electron transport phenomena in small-gap semiconductors. Adv. Phys. 23, 435–522 (1974).

    CAS  Google Scholar 

  • 50

    Luk’yanchuk, I. A. & Kopelevich, Y. Dirac and regular fermions in graphite and graphene: Implications of the quantum Corridor impact. Phys. Rev. Lett. 97, 256801 (2006).

    Google Scholar 

  • 51

    Zhou, S. Y. et al. First direct remark of Dirac fermions in graphite. Nature Phys. 2, 595–599 (2006).

    CAS  Google Scholar 

  • 52

    Zheng, Y. & Ando, T. Corridor conductivity of a two-dimensional graphite system. Phys. Rev. B 65, 245420 (2002).

    Google Scholar 

  • 53

    Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Corridor impact in graphene Phys. Rev. Lett. 95, 146801 (2005).

    CAS  Google Scholar 

  • 54

    Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Digital properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

    Google Scholar 

  • 55

    MacDonald, A. H. Quantized Corridor conductance in a relativistic two-dimensional electron gasoline. Phys. Rev. B 28, 2235–2236 (1983).

    Google Scholar 

  • 56

    Novoselov, Okay. S. et al. Unconventional quantum Corridor impact and Berry’s section of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Google Scholar 

  • 57

    Mikitik, G. P. & Sharlai, Yu.V. Manifestation of Berry’s section in metallic physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

    CAS  Google Scholar 

  • 58

    McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Corridor impact in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Google Scholar 

  • 59

    McCann, E. Asymmetry hole within the digital band construction of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Google Scholar 

  • 60

    Castro, E. V. et al. Biased bilayer graphene: semiconductor with a niche tunable by electrical subject impact. Preprint at http://arxiv.org/abs/cond-mat/0611342 (2006).

  • 61

    Lee, P. A. Localized states in a d-wave superconductor. Phys. Rev. Lett. 71, 1887–1890 (1993).

    CAS  Google Scholar 

  • 62

    Ludwig, A. W. W., Fisher, M. P. A., Shankar, R. & Grinstein, G. Integer quantum Corridor transition: An alternate strategy and actual outcomes. Phys. Rev. B 50, 7526–7552 (1994).

    CAS  Google Scholar 

  • 63

    Ziegler, Okay. Delocalization of 2D Dirac fermions: the position of a damaged symmetry. Phys. Rev. Lett. 80, 3113–3116 (1998).

    CAS  Google Scholar 

  • 64

    Ostrovsky, P. M., Gornyi, I. V. & Mirlin, A. D. Electron transport in disordered graphene. Phys. Rev. B 74, 235443 (2006).

    Google Scholar 

  • 65

    Nomura, Okay. & MacDonald, A. H. Quantum transport of massless Dirac fermions in graphene. Preprint at http://arxiv.org/abs/cond-mat/0606589 (2006).

  • 66

    Nilsson, J., Castro Neto, A. H., Guinea, F. & Peres, N. M. R. Digital properties of graphene multilayers. Preprint at http://arxiv.org/abs/cond-mat/0604106 (2006).

  • 67

    Morozov, S. V. et al. Robust suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    CAS  Google Scholar 

  • 68

    Aleiner, I. L. & Efetov, Okay. B. Impact of dysfunction on transport in graphene. Phys. Rev. Lett. 97, 236801 (2006).

    CAS  Google Scholar 

  • 69

    Das Sarma, S., Hwang, E. H., Tse, W. Okay. Is graphene a Fermi liquid? Preprint at http://arxiv.org/abs/cond-mat/0610581 (2006).

  • 70

    McCann, E. et al. Weak localisation magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006).

    CAS  Google Scholar 

  • 71

    Morpurgo, A. F. & Guinea, F. Intervalley scattering, long-range dysfunction, and efficient time reversal symmetry breaking in graphene. Phys. Rev. Lett. 97, 196804 (2006).

    CAS  Google Scholar 

  • 72

    Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Anomalously giant conductance fluctuations in weakly disordered graphene. Preprint at http://arxiv.org/abs/cond-mat/0612446 (2006).

  • 73

    Nomura, Okay. & MacDonald, A. H. Quantum Corridor ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    Google Scholar 

  • 74

    Yang, Okay., Das Sarma, S. & MacDonald, A. H. Collective modes and skyrmion excitations in graphene SU(4) quantum Corridor ferromagnets. Phys. Rev. B 74, 075423 (2006).

    Google Scholar 

  • 75

    Apalkov, V. M. & Chakraborty, T. The fractional quantum Corridor states of Dirac electrons in graphene. Phys. Rev. Lett. 97, 126801 (2006).

    Google Scholar 

  • 76

    Khveshchenko, D. V. Composite Dirac fermions in graphene. Preprint at http://arxiv.org/abs/cond-mat/0607174 (2006).

  • 77

    Alicea, J. & Fisher, M. P. A. Graphene integer quantum Corridor impact within the ferromagnetic and paramagnetic regimes, Phys. Rev. B 74, 075422 (2006).

    Google Scholar 

  • 78

    Khveshchenko, D. V. Ghost excitonic insulator transition in layered graphite. Phys. Rev. Lett. 87, 246802 (2001).

    CAS  Google Scholar 

  • 79

    Abanin, D. A., Lee, P. A. & Levitov, L. S. Spin-filtered edge states and quantum Corridor impact in graphene. Phys. Rev. Lett. 96, 176803 (2006).

    Google Scholar 

  • 80

    Toke, C., Lammert, P. E., Crespi, V. H. & Jain, J. Okay. Fractional quantum Corridor impact in graphene. Phys. Rev. B 74, 235417 (2006).

    Google Scholar 

  • 81

    Zhang, Y. et al. Landau-level splitting in graphene in excessive magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    CAS  Google Scholar 

  • 82

    Schliemann, J., Loss, D. & Westervelt, R. M. Zitterbewegung of digital wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005).

    Google Scholar 

  • 83

    Topinka, M. A., Westervelt, R. M. & Heller, E. J. Imaging electron move. Phys. In the present day 56, 47–53 (2003).

    CAS  Google Scholar 

  • 84

    Cortijo, A. & Vozmediano, M. A. H. Results of topological defects and native curvature on the digital properties of planar graphene. Nucl. Phys. B 763, 293–308 (2007).

    Google Scholar 

  • 85

    Nakada, Okay., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer dimension impact and edge form dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS  Google Scholar 

  • 86

    Brey, L. & Fertig, H. A. Digital states of graphene nanoribbons. Phys. Rev. B 73, 235411 (2006).

    Google Scholar 

  • 87

    Son, Y. W, Cohen, M. L. & Louie, S. G. Power gaps in graphene nanoribbons Phys. Rev. Lett. 97, 216803 (2006).

    Google Scholar 

  • 88

    Tilke, A. T., Simmel, F. C., Blick, R. H, Lorenz, H. & Kotthaus, J. P. Coulomb blockade in silicon nanostructures. Prog. Quantum Electron. 25, 97–138 (2001).

    CAS  Google Scholar 

  • 89

    Takahashi, Y., Ono, Y., Fujiwara, A. & Inokawa, H. Silicon single-electron units. J. Phys. Condens. Matter 14, R995–R1033 (2002).

    CAS  Google Scholar 

  • 90

    Tseng, A. A., Notargiacomo A. & Chen T. P. Nanofabrication by scanning probe microscope lithography: A evaluate. J. Vac. Sci. Tech. B 23, 877–894 (2005).

    CAS  Google Scholar 

  • 91

    Hill, E. W., Geim, A. Okay., Novoselov, Okay., Schedin, F. & Blake, P. Graphene spin valve units. IEEE Trans. Magn. 42, 2694–2696 (2006).

    Google Scholar 

  • 92

    Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. Okay. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature (within the press); doi:10.1038/nature05555.

    CAS  Google Scholar 

  • 93

    Sofo, O., Chaudhari, A. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Preprint at http://arxiv.org/abs/cond-mat/0606704 (2006).

  • Source